Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating
In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the...
Ausführliche Beschreibung
Autor*in: |
Zhao, Jian [verfasserIn] Liu, Junyang [verfasserIn] Dong, Hang [verfasserIn] Zhao, Weiqiang [verfasserIn] Wei, Lixin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of heat and mass transfer - Amsterdam [u.a.] : Elsevier, 1960, 161 |
---|---|
Übergeordnetes Werk: |
volume:161 |
DOI / URN: |
10.1016/j.ijheatmasstransfer.2020.120239 |
---|
Katalog-ID: |
ELV00470360X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00470360X | ||
003 | DE-627 | ||
005 | 20230524143004.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230503s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijheatmasstransfer.2020.120239 |2 doi | |
035 | |a (DE-627)ELV00470360X | ||
035 | |a (ELSEVIER)S0017-9310(20)33175-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Zhao, Jian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the cost. In this study the physical and mathematical models representing the heat transfer and flow of waxy crude oil during tubular heating are established. The additional specific heat capacity and momentum source terms methods are employed to address the changing physical properties related to the paraffin crystallization and dissolution. The FVM, PISO and fully implicit first order temporal differentiation algorithms are used to perform the numerical simulation. Our outcomes show that the thermal process during tubular heating can be divided into four phases: ①Local thermal response phase, ②Thermal diffusion phase, ③Global thermal response phase, ④Elimination of gelled oil phase. The initial thermal influence range is inhibited by the thermal condition and solid-like gelled waxy crude oil formed after cooling. The plume flow takes great effects of transferring the heat from the tubes to crude oil and accelerating the phase transition, and finally facilitates the oil temperature uniform increasing in most parts of the tank. Whereas the gelled crude oils in the corner between the sidewall and base wall have the strongest solid-like character and lowest temperature. A low temperature layer keeps covering the base wall. At the top wall, the center region between the sidewall and center of the tank is long time occupied by gelled oil. The proportion of solid-like gelled crude oil keeps decreasing with a small slope value following a linear relationship with heating time. A pronounced phase change of waxy crude oil from the transition state into the pure liquid is observed. The minimum temperature value decreases in the initial heating period, and then steeply increases to an approximate plateau value. The fluctuations of the heating powers are observed indicating the transient thermal convections around the tubes. The heat loss power is lowest at the base wall and nearly unchanged. The heat loss power at top wall and sidewall are significantly influenced by heating tubes and depend on the wall temperature. | ||
650 | 4 | |a Waxy crude oil | |
650 | 4 | |a Tubular heating | |
650 | 4 | |a Numerical simulation | |
650 | 4 | |a Phase change | |
650 | 4 | |a Heat transfer | |
700 | 1 | |a Liu, Junyang |e verfasserin |4 aut | |
700 | 1 | |a Dong, Hang |e verfasserin |4 aut | |
700 | 1 | |a Zhao, Weiqiang |e verfasserin |4 aut | |
700 | 1 | |a Wei, Lixin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of heat and mass transfer |d Amsterdam [u.a.] : Elsevier, 1960 |g 161 |h Online-Ressource |w (DE-627)320505081 |w (DE-600)2012726-1 |w (DE-576)096806575 |x 1879-2189 |7 nnns |
773 | 1 | 8 | |g volume:161 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 161 |
author_variant |
j z jz j l jl h d hd w z wz l w lw |
---|---|
matchkey_str |
article:18792189:2020----::ueiaivsiainnhfoadetrnfrhrceitcowxcue |
hierarchy_sort_str |
2020 |
bklnumber |
50.38 |
publishDate |
2020 |
allfields |
10.1016/j.ijheatmasstransfer.2020.120239 doi (DE-627)ELV00470360X (ELSEVIER)S0017-9310(20)33175-6 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Zhao, Jian verfasserin aut Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the cost. In this study the physical and mathematical models representing the heat transfer and flow of waxy crude oil during tubular heating are established. The additional specific heat capacity and momentum source terms methods are employed to address the changing physical properties related to the paraffin crystallization and dissolution. The FVM, PISO and fully implicit first order temporal differentiation algorithms are used to perform the numerical simulation. Our outcomes show that the thermal process during tubular heating can be divided into four phases: ①Local thermal response phase, ②Thermal diffusion phase, ③Global thermal response phase, ④Elimination of gelled oil phase. The initial thermal influence range is inhibited by the thermal condition and solid-like gelled waxy crude oil formed after cooling. The plume flow takes great effects of transferring the heat from the tubes to crude oil and accelerating the phase transition, and finally facilitates the oil temperature uniform increasing in most parts of the tank. Whereas the gelled crude oils in the corner between the sidewall and base wall have the strongest solid-like character and lowest temperature. A low temperature layer keeps covering the base wall. At the top wall, the center region between the sidewall and center of the tank is long time occupied by gelled oil. The proportion of solid-like gelled crude oil keeps decreasing with a small slope value following a linear relationship with heating time. A pronounced phase change of waxy crude oil from the transition state into the pure liquid is observed. The minimum temperature value decreases in the initial heating period, and then steeply increases to an approximate plateau value. The fluctuations of the heating powers are observed indicating the transient thermal convections around the tubes. The heat loss power is lowest at the base wall and nearly unchanged. The heat loss power at top wall and sidewall are significantly influenced by heating tubes and depend on the wall temperature. Waxy crude oil Tubular heating Numerical simulation Phase change Heat transfer Liu, Junyang verfasserin aut Dong, Hang verfasserin aut Zhao, Weiqiang verfasserin aut Wei, Lixin verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 161 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:161 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 161 |
spelling |
10.1016/j.ijheatmasstransfer.2020.120239 doi (DE-627)ELV00470360X (ELSEVIER)S0017-9310(20)33175-6 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Zhao, Jian verfasserin aut Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the cost. In this study the physical and mathematical models representing the heat transfer and flow of waxy crude oil during tubular heating are established. The additional specific heat capacity and momentum source terms methods are employed to address the changing physical properties related to the paraffin crystallization and dissolution. The FVM, PISO and fully implicit first order temporal differentiation algorithms are used to perform the numerical simulation. Our outcomes show that the thermal process during tubular heating can be divided into four phases: ①Local thermal response phase, ②Thermal diffusion phase, ③Global thermal response phase, ④Elimination of gelled oil phase. The initial thermal influence range is inhibited by the thermal condition and solid-like gelled waxy crude oil formed after cooling. The plume flow takes great effects of transferring the heat from the tubes to crude oil and accelerating the phase transition, and finally facilitates the oil temperature uniform increasing in most parts of the tank. Whereas the gelled crude oils in the corner between the sidewall and base wall have the strongest solid-like character and lowest temperature. A low temperature layer keeps covering the base wall. At the top wall, the center region between the sidewall and center of the tank is long time occupied by gelled oil. The proportion of solid-like gelled crude oil keeps decreasing with a small slope value following a linear relationship with heating time. A pronounced phase change of waxy crude oil from the transition state into the pure liquid is observed. The minimum temperature value decreases in the initial heating period, and then steeply increases to an approximate plateau value. The fluctuations of the heating powers are observed indicating the transient thermal convections around the tubes. The heat loss power is lowest at the base wall and nearly unchanged. The heat loss power at top wall and sidewall are significantly influenced by heating tubes and depend on the wall temperature. Waxy crude oil Tubular heating Numerical simulation Phase change Heat transfer Liu, Junyang verfasserin aut Dong, Hang verfasserin aut Zhao, Weiqiang verfasserin aut Wei, Lixin verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 161 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:161 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 161 |
allfields_unstemmed |
10.1016/j.ijheatmasstransfer.2020.120239 doi (DE-627)ELV00470360X (ELSEVIER)S0017-9310(20)33175-6 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Zhao, Jian verfasserin aut Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the cost. In this study the physical and mathematical models representing the heat transfer and flow of waxy crude oil during tubular heating are established. The additional specific heat capacity and momentum source terms methods are employed to address the changing physical properties related to the paraffin crystallization and dissolution. The FVM, PISO and fully implicit first order temporal differentiation algorithms are used to perform the numerical simulation. Our outcomes show that the thermal process during tubular heating can be divided into four phases: ①Local thermal response phase, ②Thermal diffusion phase, ③Global thermal response phase, ④Elimination of gelled oil phase. The initial thermal influence range is inhibited by the thermal condition and solid-like gelled waxy crude oil formed after cooling. The plume flow takes great effects of transferring the heat from the tubes to crude oil and accelerating the phase transition, and finally facilitates the oil temperature uniform increasing in most parts of the tank. Whereas the gelled crude oils in the corner between the sidewall and base wall have the strongest solid-like character and lowest temperature. A low temperature layer keeps covering the base wall. At the top wall, the center region between the sidewall and center of the tank is long time occupied by gelled oil. The proportion of solid-like gelled crude oil keeps decreasing with a small slope value following a linear relationship with heating time. A pronounced phase change of waxy crude oil from the transition state into the pure liquid is observed. The minimum temperature value decreases in the initial heating period, and then steeply increases to an approximate plateau value. The fluctuations of the heating powers are observed indicating the transient thermal convections around the tubes. The heat loss power is lowest at the base wall and nearly unchanged. The heat loss power at top wall and sidewall are significantly influenced by heating tubes and depend on the wall temperature. Waxy crude oil Tubular heating Numerical simulation Phase change Heat transfer Liu, Junyang verfasserin aut Dong, Hang verfasserin aut Zhao, Weiqiang verfasserin aut Wei, Lixin verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 161 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:161 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 161 |
allfieldsGer |
10.1016/j.ijheatmasstransfer.2020.120239 doi (DE-627)ELV00470360X (ELSEVIER)S0017-9310(20)33175-6 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Zhao, Jian verfasserin aut Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the cost. In this study the physical and mathematical models representing the heat transfer and flow of waxy crude oil during tubular heating are established. The additional specific heat capacity and momentum source terms methods are employed to address the changing physical properties related to the paraffin crystallization and dissolution. The FVM, PISO and fully implicit first order temporal differentiation algorithms are used to perform the numerical simulation. Our outcomes show that the thermal process during tubular heating can be divided into four phases: ①Local thermal response phase, ②Thermal diffusion phase, ③Global thermal response phase, ④Elimination of gelled oil phase. The initial thermal influence range is inhibited by the thermal condition and solid-like gelled waxy crude oil formed after cooling. The plume flow takes great effects of transferring the heat from the tubes to crude oil and accelerating the phase transition, and finally facilitates the oil temperature uniform increasing in most parts of the tank. Whereas the gelled crude oils in the corner between the sidewall and base wall have the strongest solid-like character and lowest temperature. A low temperature layer keeps covering the base wall. At the top wall, the center region between the sidewall and center of the tank is long time occupied by gelled oil. The proportion of solid-like gelled crude oil keeps decreasing with a small slope value following a linear relationship with heating time. A pronounced phase change of waxy crude oil from the transition state into the pure liquid is observed. The minimum temperature value decreases in the initial heating period, and then steeply increases to an approximate plateau value. The fluctuations of the heating powers are observed indicating the transient thermal convections around the tubes. The heat loss power is lowest at the base wall and nearly unchanged. The heat loss power at top wall and sidewall are significantly influenced by heating tubes and depend on the wall temperature. Waxy crude oil Tubular heating Numerical simulation Phase change Heat transfer Liu, Junyang verfasserin aut Dong, Hang verfasserin aut Zhao, Weiqiang verfasserin aut Wei, Lixin verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 161 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:161 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 161 |
allfieldsSound |
10.1016/j.ijheatmasstransfer.2020.120239 doi (DE-627)ELV00470360X (ELSEVIER)S0017-9310(20)33175-6 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Zhao, Jian verfasserin aut Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the cost. In this study the physical and mathematical models representing the heat transfer and flow of waxy crude oil during tubular heating are established. The additional specific heat capacity and momentum source terms methods are employed to address the changing physical properties related to the paraffin crystallization and dissolution. The FVM, PISO and fully implicit first order temporal differentiation algorithms are used to perform the numerical simulation. Our outcomes show that the thermal process during tubular heating can be divided into four phases: ①Local thermal response phase, ②Thermal diffusion phase, ③Global thermal response phase, ④Elimination of gelled oil phase. The initial thermal influence range is inhibited by the thermal condition and solid-like gelled waxy crude oil formed after cooling. The plume flow takes great effects of transferring the heat from the tubes to crude oil and accelerating the phase transition, and finally facilitates the oil temperature uniform increasing in most parts of the tank. Whereas the gelled crude oils in the corner between the sidewall and base wall have the strongest solid-like character and lowest temperature. A low temperature layer keeps covering the base wall. At the top wall, the center region between the sidewall and center of the tank is long time occupied by gelled oil. The proportion of solid-like gelled crude oil keeps decreasing with a small slope value following a linear relationship with heating time. A pronounced phase change of waxy crude oil from the transition state into the pure liquid is observed. The minimum temperature value decreases in the initial heating period, and then steeply increases to an approximate plateau value. The fluctuations of the heating powers are observed indicating the transient thermal convections around the tubes. The heat loss power is lowest at the base wall and nearly unchanged. The heat loss power at top wall and sidewall are significantly influenced by heating tubes and depend on the wall temperature. Waxy crude oil Tubular heating Numerical simulation Phase change Heat transfer Liu, Junyang verfasserin aut Dong, Hang verfasserin aut Zhao, Weiqiang verfasserin aut Wei, Lixin verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 161 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:161 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 161 |
language |
English |
source |
Enthalten in International journal of heat and mass transfer 161 volume:161 |
sourceStr |
Enthalten in International journal of heat and mass transfer 161 volume:161 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Waxy crude oil Tubular heating Numerical simulation Phase change Heat transfer |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of heat and mass transfer |
authorswithroles_txt_mv |
Zhao, Jian @@aut@@ Liu, Junyang @@aut@@ Dong, Hang @@aut@@ Zhao, Weiqiang @@aut@@ Wei, Lixin @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320505081 |
dewey-sort |
3620 |
id |
ELV00470360X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00470360X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2020.120239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00470360X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(20)33175-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the cost. In this study the physical and mathematical models representing the heat transfer and flow of waxy crude oil during tubular heating are established. The additional specific heat capacity and momentum source terms methods are employed to address the changing physical properties related to the paraffin crystallization and dissolution. The FVM, PISO and fully implicit first order temporal differentiation algorithms are used to perform the numerical simulation. Our outcomes show that the thermal process during tubular heating can be divided into four phases: ①Local thermal response phase, ②Thermal diffusion phase, ③Global thermal response phase, ④Elimination of gelled oil phase. The initial thermal influence range is inhibited by the thermal condition and solid-like gelled waxy crude oil formed after cooling. The plume flow takes great effects of transferring the heat from the tubes to crude oil and accelerating the phase transition, and finally facilitates the oil temperature uniform increasing in most parts of the tank. Whereas the gelled crude oils in the corner between the sidewall and base wall have the strongest solid-like character and lowest temperature. A low temperature layer keeps covering the base wall. At the top wall, the center region between the sidewall and center of the tank is long time occupied by gelled oil. The proportion of solid-like gelled crude oil keeps decreasing with a small slope value following a linear relationship with heating time. A pronounced phase change of waxy crude oil from the transition state into the pure liquid is observed. The minimum temperature value decreases in the initial heating period, and then steeply increases to an approximate plateau value. The fluctuations of the heating powers are observed indicating the transient thermal convections around the tubes. The heat loss power is lowest at the base wall and nearly unchanged. The heat loss power at top wall and sidewall are significantly influenced by heating tubes and depend on the wall temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waxy crude oil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tubular heating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Junyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Hang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Weiqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Lixin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">161</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">161</subfield></datafield></record></collection>
|
author |
Zhao, Jian |
spellingShingle |
Zhao, Jian ddc 620 bkl 50.38 misc Waxy crude oil misc Tubular heating misc Numerical simulation misc Phase change misc Heat transfer Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating |
authorStr |
Zhao, Jian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320505081 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2189 |
topic_title |
620 DE-600 50.38 bkl Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating Waxy crude oil Tubular heating Numerical simulation Phase change Heat transfer |
topic |
ddc 620 bkl 50.38 misc Waxy crude oil misc Tubular heating misc Numerical simulation misc Phase change misc Heat transfer |
topic_unstemmed |
ddc 620 bkl 50.38 misc Waxy crude oil misc Tubular heating misc Numerical simulation misc Phase change misc Heat transfer |
topic_browse |
ddc 620 bkl 50.38 misc Waxy crude oil misc Tubular heating misc Numerical simulation misc Phase change misc Heat transfer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of heat and mass transfer |
hierarchy_parent_id |
320505081 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 |
title |
Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating |
ctrlnum |
(DE-627)ELV00470360X (ELSEVIER)S0017-9310(20)33175-6 |
title_full |
Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating |
author_sort |
Zhao, Jian |
journal |
International journal of heat and mass transfer |
journalStr |
International journal of heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Zhao, Jian Liu, Junyang Dong, Hang Zhao, Weiqiang Wei, Lixin |
container_volume |
161 |
class |
620 DE-600 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhao, Jian |
doi_str_mv |
10.1016/j.ijheatmasstransfer.2020.120239 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating |
title_auth |
Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating |
abstract |
In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the cost. In this study the physical and mathematical models representing the heat transfer and flow of waxy crude oil during tubular heating are established. The additional specific heat capacity and momentum source terms methods are employed to address the changing physical properties related to the paraffin crystallization and dissolution. The FVM, PISO and fully implicit first order temporal differentiation algorithms are used to perform the numerical simulation. Our outcomes show that the thermal process during tubular heating can be divided into four phases: ①Local thermal response phase, ②Thermal diffusion phase, ③Global thermal response phase, ④Elimination of gelled oil phase. The initial thermal influence range is inhibited by the thermal condition and solid-like gelled waxy crude oil formed after cooling. The plume flow takes great effects of transferring the heat from the tubes to crude oil and accelerating the phase transition, and finally facilitates the oil temperature uniform increasing in most parts of the tank. Whereas the gelled crude oils in the corner between the sidewall and base wall have the strongest solid-like character and lowest temperature. A low temperature layer keeps covering the base wall. At the top wall, the center region between the sidewall and center of the tank is long time occupied by gelled oil. The proportion of solid-like gelled crude oil keeps decreasing with a small slope value following a linear relationship with heating time. A pronounced phase change of waxy crude oil from the transition state into the pure liquid is observed. The minimum temperature value decreases in the initial heating period, and then steeply increases to an approximate plateau value. The fluctuations of the heating powers are observed indicating the transient thermal convections around the tubes. The heat loss power is lowest at the base wall and nearly unchanged. The heat loss power at top wall and sidewall are significantly influenced by heating tubes and depend on the wall temperature. |
abstractGer |
In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the cost. In this study the physical and mathematical models representing the heat transfer and flow of waxy crude oil during tubular heating are established. The additional specific heat capacity and momentum source terms methods are employed to address the changing physical properties related to the paraffin crystallization and dissolution. The FVM, PISO and fully implicit first order temporal differentiation algorithms are used to perform the numerical simulation. Our outcomes show that the thermal process during tubular heating can be divided into four phases: ①Local thermal response phase, ②Thermal diffusion phase, ③Global thermal response phase, ④Elimination of gelled oil phase. The initial thermal influence range is inhibited by the thermal condition and solid-like gelled waxy crude oil formed after cooling. The plume flow takes great effects of transferring the heat from the tubes to crude oil and accelerating the phase transition, and finally facilitates the oil temperature uniform increasing in most parts of the tank. Whereas the gelled crude oils in the corner between the sidewall and base wall have the strongest solid-like character and lowest temperature. A low temperature layer keeps covering the base wall. At the top wall, the center region between the sidewall and center of the tank is long time occupied by gelled oil. The proportion of solid-like gelled crude oil keeps decreasing with a small slope value following a linear relationship with heating time. A pronounced phase change of waxy crude oil from the transition state into the pure liquid is observed. The minimum temperature value decreases in the initial heating period, and then steeply increases to an approximate plateau value. The fluctuations of the heating powers are observed indicating the transient thermal convections around the tubes. The heat loss power is lowest at the base wall and nearly unchanged. The heat loss power at top wall and sidewall are significantly influenced by heating tubes and depend on the wall temperature. |
abstract_unstemmed |
In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the cost. In this study the physical and mathematical models representing the heat transfer and flow of waxy crude oil during tubular heating are established. The additional specific heat capacity and momentum source terms methods are employed to address the changing physical properties related to the paraffin crystallization and dissolution. The FVM, PISO and fully implicit first order temporal differentiation algorithms are used to perform the numerical simulation. Our outcomes show that the thermal process during tubular heating can be divided into four phases: ①Local thermal response phase, ②Thermal diffusion phase, ③Global thermal response phase, ④Elimination of gelled oil phase. The initial thermal influence range is inhibited by the thermal condition and solid-like gelled waxy crude oil formed after cooling. The plume flow takes great effects of transferring the heat from the tubes to crude oil and accelerating the phase transition, and finally facilitates the oil temperature uniform increasing in most parts of the tank. Whereas the gelled crude oils in the corner between the sidewall and base wall have the strongest solid-like character and lowest temperature. A low temperature layer keeps covering the base wall. At the top wall, the center region between the sidewall and center of the tank is long time occupied by gelled oil. The proportion of solid-like gelled crude oil keeps decreasing with a small slope value following a linear relationship with heating time. A pronounced phase change of waxy crude oil from the transition state into the pure liquid is observed. The minimum temperature value decreases in the initial heating period, and then steeply increases to an approximate plateau value. The fluctuations of the heating powers are observed indicating the transient thermal convections around the tubes. The heat loss power is lowest at the base wall and nearly unchanged. The heat loss power at top wall and sidewall are significantly influenced by heating tubes and depend on the wall temperature. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating |
remote_bool |
true |
author2 |
Liu, Junyang Dong, Hang Zhao, Weiqiang Wei, Lixin |
author2Str |
Liu, Junyang Dong, Hang Zhao, Weiqiang Wei, Lixin |
ppnlink |
320505081 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijheatmasstransfer.2020.120239 |
up_date |
2024-07-06T23:52:48.371Z |
_version_ |
1803875745397735424 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00470360X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2020.120239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00470360X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(20)33175-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical investigation on the flow and heat transfer characteristics of waxy crude oil during the tubular heating</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In industrial practice, tubular heating is known as an effective technology to ensure the security storage of waxy crude oil in the tank. Insights of the thermal and flow behaviors during the tubular heating is a key aspect to optimize the strategy of this heating technology, in order to reduce the cost. In this study the physical and mathematical models representing the heat transfer and flow of waxy crude oil during tubular heating are established. The additional specific heat capacity and momentum source terms methods are employed to address the changing physical properties related to the paraffin crystallization and dissolution. The FVM, PISO and fully implicit first order temporal differentiation algorithms are used to perform the numerical simulation. Our outcomes show that the thermal process during tubular heating can be divided into four phases: ①Local thermal response phase, ②Thermal diffusion phase, ③Global thermal response phase, ④Elimination of gelled oil phase. The initial thermal influence range is inhibited by the thermal condition and solid-like gelled waxy crude oil formed after cooling. The plume flow takes great effects of transferring the heat from the tubes to crude oil and accelerating the phase transition, and finally facilitates the oil temperature uniform increasing in most parts of the tank. Whereas the gelled crude oils in the corner between the sidewall and base wall have the strongest solid-like character and lowest temperature. A low temperature layer keeps covering the base wall. At the top wall, the center region between the sidewall and center of the tank is long time occupied by gelled oil. The proportion of solid-like gelled crude oil keeps decreasing with a small slope value following a linear relationship with heating time. A pronounced phase change of waxy crude oil from the transition state into the pure liquid is observed. The minimum temperature value decreases in the initial heating period, and then steeply increases to an approximate plateau value. The fluctuations of the heating powers are observed indicating the transient thermal convections around the tubes. The heat loss power is lowest at the base wall and nearly unchanged. The heat loss power at top wall and sidewall are significantly influenced by heating tubes and depend on the wall temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waxy crude oil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tubular heating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Junyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Hang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Weiqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Lixin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">161</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">161</subfield></datafield></record></collection>
|
score |
7.4018803 |