Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO
Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluoresc...
Ausführliche Beschreibung
Autor*in: |
Robby, Akhmad Irhas [verfasserIn] Kim, Seul Gi [verfasserIn] Lee, Un Han [verfasserIn] In, Insik [verfasserIn] Lee, Gibaek [verfasserIn] Park, Sung Young [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 403 |
---|---|
Übergeordnetes Werk: |
volume:403 |
DOI / URN: |
10.1016/j.cej.2020.126351 |
---|
Katalog-ID: |
ELV004823044 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004823044 | ||
003 | DE-627 | ||
005 | 20230524131710.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230503s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2020.126351 |2 doi | |
035 | |a (DE-627)ELV004823044 | ||
035 | |a (ELSEVIER)S1385-8947(20)32479-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 660.05 |q DE-101 | |
082 | 0 | 4 | |a 660 |q DE-101 |
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Robby, Akhmad Irhas |e verfasserin |4 aut | |
245 | 1 | 0 | |a Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluorescent carbon dots (FCDs), which were synthesized from a cationic polymer. The FCDs were further integrated with near-infrared (NIR)-responsive cesium tungsten oxide (CsWO3) by utilizing catechol moieties on the FCD surface for photothermal-based antibacterial activity. The CsWO3–FCD nanohybrids showed strong fluorescence emission, which was quenched due to interaction between the cationic FCD surface and the anionic bacterial cell wall. This interaction could also be observed electrochemically according to the change in resistance values before and after binding with bacteria. In this study, the limit of detection (LOD) was determined at 70 CFU/mL for Escherichia coli and 131 CFU/mL for Staphylococcus aureus using the luminescent method and <10 CFU/mL for both bacterial strains using the electrochemical method, indicating the electrochemical approach as the more sensitive method. Additionally, the electrochemical-based bacterial detection assay can be developed into a wireless bacteria-sensing system, which can be easily monitored in real-time via a smartphone. Furthermore, this nanohybrid was able to cause photothermolysis of bacteria upon NIR exposure owing to the photothermal conversion of CsWO3, which killed almost 100% of E. coli and S. aureus using only 1 mg/mL of CsWO3–FCD. Thus, this nanohybrid offers a novel approach for dual electrochemical- and luminescent-based detection of bacteria along with high antibacterial activity. | ||
650 | 4 | |a Fluorescent carbon dot | |
650 | 4 | |a Cesium tungsten oxide | |
650 | 4 | |a Luminescent sensor | |
650 | 4 | |a Electrochemical sensor | |
650 | 4 | |a Wireless sensor | |
650 | 4 | |a Photothermal ablation | |
700 | 1 | |a Kim, Seul Gi |e verfasserin |4 aut | |
700 | 1 | |a Lee, Un Han |e verfasserin |4 aut | |
700 | 1 | |a In, Insik |e verfasserin |4 aut | |
700 | 1 | |a Lee, Gibaek |e verfasserin |4 aut | |
700 | 1 | |a Park, Sung Young |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 403 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:403 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |
951 | |a AR | ||
952 | |d 403 | ||
953 | |2 045F |a 660.05 |
author_variant |
a i r ai air s g k sg sgk u h l uh uhl i i ii g l gl s y p sy syp |
---|---|
matchkey_str |
article:18733212:2020----::ieeslcrceiaaduiecndtcinfatraae |
hierarchy_sort_str |
2020 |
bklnumber |
58.10 |
publishDate |
2020 |
allfields |
10.1016/j.cej.2020.126351 doi (DE-627)ELV004823044 (ELSEVIER)S1385-8947(20)32479-7 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Robby, Akhmad Irhas verfasserin aut Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluorescent carbon dots (FCDs), which were synthesized from a cationic polymer. The FCDs were further integrated with near-infrared (NIR)-responsive cesium tungsten oxide (CsWO3) by utilizing catechol moieties on the FCD surface for photothermal-based antibacterial activity. The CsWO3–FCD nanohybrids showed strong fluorescence emission, which was quenched due to interaction between the cationic FCD surface and the anionic bacterial cell wall. This interaction could also be observed electrochemically according to the change in resistance values before and after binding with bacteria. In this study, the limit of detection (LOD) was determined at 70 CFU/mL for Escherichia coli and 131 CFU/mL for Staphylococcus aureus using the luminescent method and <10 CFU/mL for both bacterial strains using the electrochemical method, indicating the electrochemical approach as the more sensitive method. Additionally, the electrochemical-based bacterial detection assay can be developed into a wireless bacteria-sensing system, which can be easily monitored in real-time via a smartphone. Furthermore, this nanohybrid was able to cause photothermolysis of bacteria upon NIR exposure owing to the photothermal conversion of CsWO3, which killed almost 100% of E. coli and S. aureus using only 1 mg/mL of CsWO3–FCD. Thus, this nanohybrid offers a novel approach for dual electrochemical- and luminescent-based detection of bacteria along with high antibacterial activity. Fluorescent carbon dot Cesium tungsten oxide Luminescent sensor Electrochemical sensor Wireless sensor Photothermal ablation Kim, Seul Gi verfasserin aut Lee, Un Han verfasserin aut In, Insik verfasserin aut Lee, Gibaek verfasserin aut Park, Sung Young verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 403 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:403 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 403 045F 660.05 |
spelling |
10.1016/j.cej.2020.126351 doi (DE-627)ELV004823044 (ELSEVIER)S1385-8947(20)32479-7 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Robby, Akhmad Irhas verfasserin aut Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluorescent carbon dots (FCDs), which were synthesized from a cationic polymer. The FCDs were further integrated with near-infrared (NIR)-responsive cesium tungsten oxide (CsWO3) by utilizing catechol moieties on the FCD surface for photothermal-based antibacterial activity. The CsWO3–FCD nanohybrids showed strong fluorescence emission, which was quenched due to interaction between the cationic FCD surface and the anionic bacterial cell wall. This interaction could also be observed electrochemically according to the change in resistance values before and after binding with bacteria. In this study, the limit of detection (LOD) was determined at 70 CFU/mL for Escherichia coli and 131 CFU/mL for Staphylococcus aureus using the luminescent method and <10 CFU/mL for both bacterial strains using the electrochemical method, indicating the electrochemical approach as the more sensitive method. Additionally, the electrochemical-based bacterial detection assay can be developed into a wireless bacteria-sensing system, which can be easily monitored in real-time via a smartphone. Furthermore, this nanohybrid was able to cause photothermolysis of bacteria upon NIR exposure owing to the photothermal conversion of CsWO3, which killed almost 100% of E. coli and S. aureus using only 1 mg/mL of CsWO3–FCD. Thus, this nanohybrid offers a novel approach for dual electrochemical- and luminescent-based detection of bacteria along with high antibacterial activity. Fluorescent carbon dot Cesium tungsten oxide Luminescent sensor Electrochemical sensor Wireless sensor Photothermal ablation Kim, Seul Gi verfasserin aut Lee, Un Han verfasserin aut In, Insik verfasserin aut Lee, Gibaek verfasserin aut Park, Sung Young verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 403 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:403 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 403 045F 660.05 |
allfields_unstemmed |
10.1016/j.cej.2020.126351 doi (DE-627)ELV004823044 (ELSEVIER)S1385-8947(20)32479-7 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Robby, Akhmad Irhas verfasserin aut Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluorescent carbon dots (FCDs), which were synthesized from a cationic polymer. The FCDs were further integrated with near-infrared (NIR)-responsive cesium tungsten oxide (CsWO3) by utilizing catechol moieties on the FCD surface for photothermal-based antibacterial activity. The CsWO3–FCD nanohybrids showed strong fluorescence emission, which was quenched due to interaction between the cationic FCD surface and the anionic bacterial cell wall. This interaction could also be observed electrochemically according to the change in resistance values before and after binding with bacteria. In this study, the limit of detection (LOD) was determined at 70 CFU/mL for Escherichia coli and 131 CFU/mL for Staphylococcus aureus using the luminescent method and <10 CFU/mL for both bacterial strains using the electrochemical method, indicating the electrochemical approach as the more sensitive method. Additionally, the electrochemical-based bacterial detection assay can be developed into a wireless bacteria-sensing system, which can be easily monitored in real-time via a smartphone. Furthermore, this nanohybrid was able to cause photothermolysis of bacteria upon NIR exposure owing to the photothermal conversion of CsWO3, which killed almost 100% of E. coli and S. aureus using only 1 mg/mL of CsWO3–FCD. Thus, this nanohybrid offers a novel approach for dual electrochemical- and luminescent-based detection of bacteria along with high antibacterial activity. Fluorescent carbon dot Cesium tungsten oxide Luminescent sensor Electrochemical sensor Wireless sensor Photothermal ablation Kim, Seul Gi verfasserin aut Lee, Un Han verfasserin aut In, Insik verfasserin aut Lee, Gibaek verfasserin aut Park, Sung Young verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 403 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:403 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 403 045F 660.05 |
allfieldsGer |
10.1016/j.cej.2020.126351 doi (DE-627)ELV004823044 (ELSEVIER)S1385-8947(20)32479-7 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Robby, Akhmad Irhas verfasserin aut Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluorescent carbon dots (FCDs), which were synthesized from a cationic polymer. The FCDs were further integrated with near-infrared (NIR)-responsive cesium tungsten oxide (CsWO3) by utilizing catechol moieties on the FCD surface for photothermal-based antibacterial activity. The CsWO3–FCD nanohybrids showed strong fluorescence emission, which was quenched due to interaction between the cationic FCD surface and the anionic bacterial cell wall. This interaction could also be observed electrochemically according to the change in resistance values before and after binding with bacteria. In this study, the limit of detection (LOD) was determined at 70 CFU/mL for Escherichia coli and 131 CFU/mL for Staphylococcus aureus using the luminescent method and <10 CFU/mL for both bacterial strains using the electrochemical method, indicating the electrochemical approach as the more sensitive method. Additionally, the electrochemical-based bacterial detection assay can be developed into a wireless bacteria-sensing system, which can be easily monitored in real-time via a smartphone. Furthermore, this nanohybrid was able to cause photothermolysis of bacteria upon NIR exposure owing to the photothermal conversion of CsWO3, which killed almost 100% of E. coli and S. aureus using only 1 mg/mL of CsWO3–FCD. Thus, this nanohybrid offers a novel approach for dual electrochemical- and luminescent-based detection of bacteria along with high antibacterial activity. Fluorescent carbon dot Cesium tungsten oxide Luminescent sensor Electrochemical sensor Wireless sensor Photothermal ablation Kim, Seul Gi verfasserin aut Lee, Un Han verfasserin aut In, Insik verfasserin aut Lee, Gibaek verfasserin aut Park, Sung Young verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 403 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:403 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 403 045F 660.05 |
allfieldsSound |
10.1016/j.cej.2020.126351 doi (DE-627)ELV004823044 (ELSEVIER)S1385-8947(20)32479-7 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Robby, Akhmad Irhas verfasserin aut Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluorescent carbon dots (FCDs), which were synthesized from a cationic polymer. The FCDs were further integrated with near-infrared (NIR)-responsive cesium tungsten oxide (CsWO3) by utilizing catechol moieties on the FCD surface for photothermal-based antibacterial activity. The CsWO3–FCD nanohybrids showed strong fluorescence emission, which was quenched due to interaction between the cationic FCD surface and the anionic bacterial cell wall. This interaction could also be observed electrochemically according to the change in resistance values before and after binding with bacteria. In this study, the limit of detection (LOD) was determined at 70 CFU/mL for Escherichia coli and 131 CFU/mL for Staphylococcus aureus using the luminescent method and <10 CFU/mL for both bacterial strains using the electrochemical method, indicating the electrochemical approach as the more sensitive method. Additionally, the electrochemical-based bacterial detection assay can be developed into a wireless bacteria-sensing system, which can be easily monitored in real-time via a smartphone. Furthermore, this nanohybrid was able to cause photothermolysis of bacteria upon NIR exposure owing to the photothermal conversion of CsWO3, which killed almost 100% of E. coli and S. aureus using only 1 mg/mL of CsWO3–FCD. Thus, this nanohybrid offers a novel approach for dual electrochemical- and luminescent-based detection of bacteria along with high antibacterial activity. Fluorescent carbon dot Cesium tungsten oxide Luminescent sensor Electrochemical sensor Wireless sensor Photothermal ablation Kim, Seul Gi verfasserin aut Lee, Un Han verfasserin aut In, Insik verfasserin aut Lee, Gibaek verfasserin aut Park, Sung Young verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 403 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:403 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 403 045F 660.05 |
language |
English |
source |
Enthalten in The chemical engineering journal 403 volume:403 |
sourceStr |
Enthalten in The chemical engineering journal 403 volume:403 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Fluorescent carbon dot Cesium tungsten oxide Luminescent sensor Electrochemical sensor Wireless sensor Photothermal ablation |
dewey-raw |
660.05 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Robby, Akhmad Irhas @@aut@@ Kim, Seul Gi @@aut@@ Lee, Un Han @@aut@@ In, Insik @@aut@@ Lee, Gibaek @@aut@@ Park, Sung Young @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660.05 |
id |
ELV004823044 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004823044</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131710.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2020.126351</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004823044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(20)32479-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Robby, Akhmad Irhas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluorescent carbon dots (FCDs), which were synthesized from a cationic polymer. The FCDs were further integrated with near-infrared (NIR)-responsive cesium tungsten oxide (CsWO3) by utilizing catechol moieties on the FCD surface for photothermal-based antibacterial activity. The CsWO3–FCD nanohybrids showed strong fluorescence emission, which was quenched due to interaction between the cationic FCD surface and the anionic bacterial cell wall. This interaction could also be observed electrochemically according to the change in resistance values before and after binding with bacteria. In this study, the limit of detection (LOD) was determined at 70 CFU/mL for Escherichia coli and 131 CFU/mL for Staphylococcus aureus using the luminescent method and <10 CFU/mL for both bacterial strains using the electrochemical method, indicating the electrochemical approach as the more sensitive method. Additionally, the electrochemical-based bacterial detection assay can be developed into a wireless bacteria-sensing system, which can be easily monitored in real-time via a smartphone. Furthermore, this nanohybrid was able to cause photothermolysis of bacteria upon NIR exposure owing to the photothermal conversion of CsWO3, which killed almost 100% of E. coli and S. aureus using only 1 mg/mL of CsWO3–FCD. Thus, this nanohybrid offers a novel approach for dual electrochemical- and luminescent-based detection of bacteria along with high antibacterial activity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescent carbon dot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cesium tungsten oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Luminescent sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photothermal ablation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Seul Gi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Un Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">In, Insik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Gibaek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Sung Young</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">403</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">403</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
author |
Robby, Akhmad Irhas |
spellingShingle |
Robby, Akhmad Irhas ddc 660.05 ddc 660 bkl 58.10 misc Fluorescent carbon dot misc Cesium tungsten oxide misc Luminescent sensor misc Electrochemical sensor misc Wireless sensor misc Photothermal ablation Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO |
authorStr |
Robby, Akhmad Irhas |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO Fluorescent carbon dot Cesium tungsten oxide Luminescent sensor Electrochemical sensor Wireless sensor Photothermal ablation |
topic |
ddc 660.05 ddc 660 bkl 58.10 misc Fluorescent carbon dot misc Cesium tungsten oxide misc Luminescent sensor misc Electrochemical sensor misc Wireless sensor misc Photothermal ablation |
topic_unstemmed |
ddc 660.05 ddc 660 bkl 58.10 misc Fluorescent carbon dot misc Cesium tungsten oxide misc Luminescent sensor misc Electrochemical sensor misc Wireless sensor misc Photothermal ablation |
topic_browse |
ddc 660.05 ddc 660 bkl 58.10 misc Fluorescent carbon dot misc Cesium tungsten oxide misc Luminescent sensor misc Electrochemical sensor misc Wireless sensor misc Photothermal ablation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO |
ctrlnum |
(DE-627)ELV004823044 (ELSEVIER)S1385-8947(20)32479-7 |
title_full |
Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO |
author_sort |
Robby, Akhmad Irhas |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Robby, Akhmad Irhas Kim, Seul Gi Lee, Un Han In, Insik Lee, Gibaek Park, Sung Young |
container_volume |
403 |
class |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Robby, Akhmad Irhas |
doi_str_mv |
10.1016/j.cej.2020.126351 |
dewey-full |
660.05 660 |
author2-role |
verfasserin |
title_sort |
wireless electrochemical and luminescent detection of bacteria based on surface-coated cswo |
title_auth |
Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO |
abstract |
Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluorescent carbon dots (FCDs), which were synthesized from a cationic polymer. The FCDs were further integrated with near-infrared (NIR)-responsive cesium tungsten oxide (CsWO3) by utilizing catechol moieties on the FCD surface for photothermal-based antibacterial activity. The CsWO3–FCD nanohybrids showed strong fluorescence emission, which was quenched due to interaction between the cationic FCD surface and the anionic bacterial cell wall. This interaction could also be observed electrochemically according to the change in resistance values before and after binding with bacteria. In this study, the limit of detection (LOD) was determined at 70 CFU/mL for Escherichia coli and 131 CFU/mL for Staphylococcus aureus using the luminescent method and <10 CFU/mL for both bacterial strains using the electrochemical method, indicating the electrochemical approach as the more sensitive method. Additionally, the electrochemical-based bacterial detection assay can be developed into a wireless bacteria-sensing system, which can be easily monitored in real-time via a smartphone. Furthermore, this nanohybrid was able to cause photothermolysis of bacteria upon NIR exposure owing to the photothermal conversion of CsWO3, which killed almost 100% of E. coli and S. aureus using only 1 mg/mL of CsWO3–FCD. Thus, this nanohybrid offers a novel approach for dual electrochemical- and luminescent-based detection of bacteria along with high antibacterial activity. |
abstractGer |
Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluorescent carbon dots (FCDs), which were synthesized from a cationic polymer. The FCDs were further integrated with near-infrared (NIR)-responsive cesium tungsten oxide (CsWO3) by utilizing catechol moieties on the FCD surface for photothermal-based antibacterial activity. The CsWO3–FCD nanohybrids showed strong fluorescence emission, which was quenched due to interaction between the cationic FCD surface and the anionic bacterial cell wall. This interaction could also be observed electrochemically according to the change in resistance values before and after binding with bacteria. In this study, the limit of detection (LOD) was determined at 70 CFU/mL for Escherichia coli and 131 CFU/mL for Staphylococcus aureus using the luminescent method and <10 CFU/mL for both bacterial strains using the electrochemical method, indicating the electrochemical approach as the more sensitive method. Additionally, the electrochemical-based bacterial detection assay can be developed into a wireless bacteria-sensing system, which can be easily monitored in real-time via a smartphone. Furthermore, this nanohybrid was able to cause photothermolysis of bacteria upon NIR exposure owing to the photothermal conversion of CsWO3, which killed almost 100% of E. coli and S. aureus using only 1 mg/mL of CsWO3–FCD. Thus, this nanohybrid offers a novel approach for dual electrochemical- and luminescent-based detection of bacteria along with high antibacterial activity. |
abstract_unstemmed |
Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluorescent carbon dots (FCDs), which were synthesized from a cationic polymer. The FCDs were further integrated with near-infrared (NIR)-responsive cesium tungsten oxide (CsWO3) by utilizing catechol moieties on the FCD surface for photothermal-based antibacterial activity. The CsWO3–FCD nanohybrids showed strong fluorescence emission, which was quenched due to interaction between the cationic FCD surface and the anionic bacterial cell wall. This interaction could also be observed electrochemically according to the change in resistance values before and after binding with bacteria. In this study, the limit of detection (LOD) was determined at 70 CFU/mL for Escherichia coli and 131 CFU/mL for Staphylococcus aureus using the luminescent method and <10 CFU/mL for both bacterial strains using the electrochemical method, indicating the electrochemical approach as the more sensitive method. Additionally, the electrochemical-based bacterial detection assay can be developed into a wireless bacteria-sensing system, which can be easily monitored in real-time via a smartphone. Furthermore, this nanohybrid was able to cause photothermolysis of bacteria upon NIR exposure owing to the photothermal conversion of CsWO3, which killed almost 100% of E. coli and S. aureus using only 1 mg/mL of CsWO3–FCD. Thus, this nanohybrid offers a novel approach for dual electrochemical- and luminescent-based detection of bacteria along with high antibacterial activity. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO |
remote_bool |
true |
author2 |
Kim, Seul Gi Lee, Un Han In, Insik Lee, Gibaek Park, Sung Young |
author2Str |
Kim, Seul Gi Lee, Un Han In, Insik Lee, Gibaek Park, Sung Young |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2020.126351 |
up_date |
2024-07-07T00:16:01.596Z |
_version_ |
1803877206300033024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004823044</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131710.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2020.126351</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004823044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(20)32479-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Robby, Akhmad Irhas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Simple and rapid simultaneous detection and killing of bacteria is crucial for addressing health issues related to pathogenic bacteria. Here, we describe the design of a wireless electrochemical and luminescent sensor for bacteria detection using surface-coatable electrochemically generated fluorescent carbon dots (FCDs), which were synthesized from a cationic polymer. The FCDs were further integrated with near-infrared (NIR)-responsive cesium tungsten oxide (CsWO3) by utilizing catechol moieties on the FCD surface for photothermal-based antibacterial activity. The CsWO3–FCD nanohybrids showed strong fluorescence emission, which was quenched due to interaction between the cationic FCD surface and the anionic bacterial cell wall. This interaction could also be observed electrochemically according to the change in resistance values before and after binding with bacteria. In this study, the limit of detection (LOD) was determined at 70 CFU/mL for Escherichia coli and 131 CFU/mL for Staphylococcus aureus using the luminescent method and <10 CFU/mL for both bacterial strains using the electrochemical method, indicating the electrochemical approach as the more sensitive method. Additionally, the electrochemical-based bacterial detection assay can be developed into a wireless bacteria-sensing system, which can be easily monitored in real-time via a smartphone. Furthermore, this nanohybrid was able to cause photothermolysis of bacteria upon NIR exposure owing to the photothermal conversion of CsWO3, which killed almost 100% of E. coli and S. aureus using only 1 mg/mL of CsWO3–FCD. Thus, this nanohybrid offers a novel approach for dual electrochemical- and luminescent-based detection of bacteria along with high antibacterial activity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescent carbon dot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cesium tungsten oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Luminescent sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photothermal ablation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Seul Gi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Un Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">In, Insik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Gibaek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Sung Young</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">403</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:403</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">403</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
score |
7.400943 |