Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters
Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQ...
Ausführliche Beschreibung
Autor*in: |
Chen, Junyang [verfasserIn] Wang, Mengke [verfasserIn] Zhou, Xiaobin [verfasserIn] Nie, Yixin [verfasserIn] Su, Xingguang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Sensors and actuators |
---|---|
Übergeordnetes Werk: |
volume:326 |
DOI / URN: |
10.1016/j.snb.2020.128847 |
---|
Katalog-ID: |
ELV004898567 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004898567 | ||
003 | DE-627 | ||
005 | 20230524142245.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230503s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.snb.2020.128847 |2 doi | |
035 | |a (DE-627)ELV004898567 | ||
035 | |a (ELSEVIER)S0925-4005(20)31194-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
084 | |a 50.22 |2 bkl | ||
084 | |a 35.07 |2 bkl | ||
100 | 1 | |a Chen, Junyang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQDs) for the detection of HTLV-I DNA. Firstly, large amount of AT rich single DNA (o-DNA) can be released from the designed hairpin DNA in the presence of trace target DNA via exonuclease III assisted target recycling amplification strategy. Then, the released o-DNA hybridized with the complementary DNA1 which was modified on the surface of GQDs, and the formed hybridized DNA with blunt 3′-hydroxylated terminus that couldn’t be digested by exonuclease I could act as the template for the generation of fluorescent CuNCs. While in the absence of target DNA, the o-DNA couldn’t be released, thus the DNA1 with 3′overhang ends could be degraded by exonuclease I, which resulted in the in-situ generation of fluorescent CuNCs on the surface of GQDs was blocked owing to the lack of DNA template. The GQD fluorescence in the GQD-CuNC nanohybrid was almost uninfluenced during the whole process. Therefore, with the GQD serving as the reference and CuNC acting as the reporter signal, there was an excellent linear relationship between the change of fluorescence intensity ratio (F595/F445) and the concentration of HTLV-I DNA in the range of 20 pM-12 nM with a detection limit of 10 pM. Furthermore, the biosensor exhibited satisfactory results for monitoring the presence of HTLV-I DNA in human serum. | ||
650 | 4 | |a Copper nanoclusters | |
650 | 4 | |a Graphene quantum dots | |
650 | 4 | |a GQD-CuNC nanohybrid | |
650 | 4 | |a Ratio fluorescence | |
650 | 4 | |a HTLV-I DNA | |
700 | 1 | |a Wang, Mengke |e verfasserin |4 aut | |
700 | 1 | |a Zhou, Xiaobin |e verfasserin |4 aut | |
700 | 1 | |a Nie, Yixin |e verfasserin |4 aut | |
700 | 1 | |a Su, Xingguang |e verfasserin |0 (orcid)0000-0003-3053-4612 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Sensors and actuators <Lausanne> / B |d Amsterdam [u.a.] : Elsevier Science, 1990 |g 326 |h Online-Ressource |w (DE-627)306710358 |w (DE-600)1500731-5 |w (DE-576)082435855 |x 0925-4005 |7 nnns |
773 | 1 | 8 | |g volume:326 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.22 |j Sensorik |
936 | b | k | |a 35.07 |j Chemisches Labor |j chemische Methoden |
951 | |a AR | ||
952 | |d 326 |
author_variant |
j c jc m w mw x z xz y n yn x s xs |
---|---|
matchkey_str |
article:09254005:2020----::ihyestvlblreloecneeemntoolmhtoivrsnbsdnxncesassetrerccigmlfctoad |
hierarchy_sort_str |
2020 |
bklnumber |
50.22 35.07 |
publishDate |
2020 |
allfields |
10.1016/j.snb.2020.128847 doi (DE-627)ELV004898567 (ELSEVIER)S0925-4005(20)31194-1 DE-627 ger DE-627 rda eng 530 620 DE-600 50.22 bkl 35.07 bkl Chen, Junyang verfasserin aut Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQDs) for the detection of HTLV-I DNA. Firstly, large amount of AT rich single DNA (o-DNA) can be released from the designed hairpin DNA in the presence of trace target DNA via exonuclease III assisted target recycling amplification strategy. Then, the released o-DNA hybridized with the complementary DNA1 which was modified on the surface of GQDs, and the formed hybridized DNA with blunt 3′-hydroxylated terminus that couldn’t be digested by exonuclease I could act as the template for the generation of fluorescent CuNCs. While in the absence of target DNA, the o-DNA couldn’t be released, thus the DNA1 with 3′overhang ends could be degraded by exonuclease I, which resulted in the in-situ generation of fluorescent CuNCs on the surface of GQDs was blocked owing to the lack of DNA template. The GQD fluorescence in the GQD-CuNC nanohybrid was almost uninfluenced during the whole process. Therefore, with the GQD serving as the reference and CuNC acting as the reporter signal, there was an excellent linear relationship between the change of fluorescence intensity ratio (F595/F445) and the concentration of HTLV-I DNA in the range of 20 pM-12 nM with a detection limit of 10 pM. Furthermore, the biosensor exhibited satisfactory results for monitoring the presence of HTLV-I DNA in human serum. Copper nanoclusters Graphene quantum dots GQD-CuNC nanohybrid Ratio fluorescence HTLV-I DNA Wang, Mengke verfasserin aut Zhou, Xiaobin verfasserin aut Nie, Yixin verfasserin aut Su, Xingguang verfasserin (orcid)0000-0003-3053-4612 aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 326 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:326 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.22 Sensorik 35.07 Chemisches Labor chemische Methoden AR 326 |
spelling |
10.1016/j.snb.2020.128847 doi (DE-627)ELV004898567 (ELSEVIER)S0925-4005(20)31194-1 DE-627 ger DE-627 rda eng 530 620 DE-600 50.22 bkl 35.07 bkl Chen, Junyang verfasserin aut Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQDs) for the detection of HTLV-I DNA. Firstly, large amount of AT rich single DNA (o-DNA) can be released from the designed hairpin DNA in the presence of trace target DNA via exonuclease III assisted target recycling amplification strategy. Then, the released o-DNA hybridized with the complementary DNA1 which was modified on the surface of GQDs, and the formed hybridized DNA with blunt 3′-hydroxylated terminus that couldn’t be digested by exonuclease I could act as the template for the generation of fluorescent CuNCs. While in the absence of target DNA, the o-DNA couldn’t be released, thus the DNA1 with 3′overhang ends could be degraded by exonuclease I, which resulted in the in-situ generation of fluorescent CuNCs on the surface of GQDs was blocked owing to the lack of DNA template. The GQD fluorescence in the GQD-CuNC nanohybrid was almost uninfluenced during the whole process. Therefore, with the GQD serving as the reference and CuNC acting as the reporter signal, there was an excellent linear relationship between the change of fluorescence intensity ratio (F595/F445) and the concentration of HTLV-I DNA in the range of 20 pM-12 nM with a detection limit of 10 pM. Furthermore, the biosensor exhibited satisfactory results for monitoring the presence of HTLV-I DNA in human serum. Copper nanoclusters Graphene quantum dots GQD-CuNC nanohybrid Ratio fluorescence HTLV-I DNA Wang, Mengke verfasserin aut Zhou, Xiaobin verfasserin aut Nie, Yixin verfasserin aut Su, Xingguang verfasserin (orcid)0000-0003-3053-4612 aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 326 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:326 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.22 Sensorik 35.07 Chemisches Labor chemische Methoden AR 326 |
allfields_unstemmed |
10.1016/j.snb.2020.128847 doi (DE-627)ELV004898567 (ELSEVIER)S0925-4005(20)31194-1 DE-627 ger DE-627 rda eng 530 620 DE-600 50.22 bkl 35.07 bkl Chen, Junyang verfasserin aut Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQDs) for the detection of HTLV-I DNA. Firstly, large amount of AT rich single DNA (o-DNA) can be released from the designed hairpin DNA in the presence of trace target DNA via exonuclease III assisted target recycling amplification strategy. Then, the released o-DNA hybridized with the complementary DNA1 which was modified on the surface of GQDs, and the formed hybridized DNA with blunt 3′-hydroxylated terminus that couldn’t be digested by exonuclease I could act as the template for the generation of fluorescent CuNCs. While in the absence of target DNA, the o-DNA couldn’t be released, thus the DNA1 with 3′overhang ends could be degraded by exonuclease I, which resulted in the in-situ generation of fluorescent CuNCs on the surface of GQDs was blocked owing to the lack of DNA template. The GQD fluorescence in the GQD-CuNC nanohybrid was almost uninfluenced during the whole process. Therefore, with the GQD serving as the reference and CuNC acting as the reporter signal, there was an excellent linear relationship between the change of fluorescence intensity ratio (F595/F445) and the concentration of HTLV-I DNA in the range of 20 pM-12 nM with a detection limit of 10 pM. Furthermore, the biosensor exhibited satisfactory results for monitoring the presence of HTLV-I DNA in human serum. Copper nanoclusters Graphene quantum dots GQD-CuNC nanohybrid Ratio fluorescence HTLV-I DNA Wang, Mengke verfasserin aut Zhou, Xiaobin verfasserin aut Nie, Yixin verfasserin aut Su, Xingguang verfasserin (orcid)0000-0003-3053-4612 aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 326 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:326 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.22 Sensorik 35.07 Chemisches Labor chemische Methoden AR 326 |
allfieldsGer |
10.1016/j.snb.2020.128847 doi (DE-627)ELV004898567 (ELSEVIER)S0925-4005(20)31194-1 DE-627 ger DE-627 rda eng 530 620 DE-600 50.22 bkl 35.07 bkl Chen, Junyang verfasserin aut Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQDs) for the detection of HTLV-I DNA. Firstly, large amount of AT rich single DNA (o-DNA) can be released from the designed hairpin DNA in the presence of trace target DNA via exonuclease III assisted target recycling amplification strategy. Then, the released o-DNA hybridized with the complementary DNA1 which was modified on the surface of GQDs, and the formed hybridized DNA with blunt 3′-hydroxylated terminus that couldn’t be digested by exonuclease I could act as the template for the generation of fluorescent CuNCs. While in the absence of target DNA, the o-DNA couldn’t be released, thus the DNA1 with 3′overhang ends could be degraded by exonuclease I, which resulted in the in-situ generation of fluorescent CuNCs on the surface of GQDs was blocked owing to the lack of DNA template. The GQD fluorescence in the GQD-CuNC nanohybrid was almost uninfluenced during the whole process. Therefore, with the GQD serving as the reference and CuNC acting as the reporter signal, there was an excellent linear relationship between the change of fluorescence intensity ratio (F595/F445) and the concentration of HTLV-I DNA in the range of 20 pM-12 nM with a detection limit of 10 pM. Furthermore, the biosensor exhibited satisfactory results for monitoring the presence of HTLV-I DNA in human serum. Copper nanoclusters Graphene quantum dots GQD-CuNC nanohybrid Ratio fluorescence HTLV-I DNA Wang, Mengke verfasserin aut Zhou, Xiaobin verfasserin aut Nie, Yixin verfasserin aut Su, Xingguang verfasserin (orcid)0000-0003-3053-4612 aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 326 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:326 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.22 Sensorik 35.07 Chemisches Labor chemische Methoden AR 326 |
allfieldsSound |
10.1016/j.snb.2020.128847 doi (DE-627)ELV004898567 (ELSEVIER)S0925-4005(20)31194-1 DE-627 ger DE-627 rda eng 530 620 DE-600 50.22 bkl 35.07 bkl Chen, Junyang verfasserin aut Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQDs) for the detection of HTLV-I DNA. Firstly, large amount of AT rich single DNA (o-DNA) can be released from the designed hairpin DNA in the presence of trace target DNA via exonuclease III assisted target recycling amplification strategy. Then, the released o-DNA hybridized with the complementary DNA1 which was modified on the surface of GQDs, and the formed hybridized DNA with blunt 3′-hydroxylated terminus that couldn’t be digested by exonuclease I could act as the template for the generation of fluorescent CuNCs. While in the absence of target DNA, the o-DNA couldn’t be released, thus the DNA1 with 3′overhang ends could be degraded by exonuclease I, which resulted in the in-situ generation of fluorescent CuNCs on the surface of GQDs was blocked owing to the lack of DNA template. The GQD fluorescence in the GQD-CuNC nanohybrid was almost uninfluenced during the whole process. Therefore, with the GQD serving as the reference and CuNC acting as the reporter signal, there was an excellent linear relationship between the change of fluorescence intensity ratio (F595/F445) and the concentration of HTLV-I DNA in the range of 20 pM-12 nM with a detection limit of 10 pM. Furthermore, the biosensor exhibited satisfactory results for monitoring the presence of HTLV-I DNA in human serum. Copper nanoclusters Graphene quantum dots GQD-CuNC nanohybrid Ratio fluorescence HTLV-I DNA Wang, Mengke verfasserin aut Zhou, Xiaobin verfasserin aut Nie, Yixin verfasserin aut Su, Xingguang verfasserin (orcid)0000-0003-3053-4612 aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 326 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:326 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.22 Sensorik 35.07 Chemisches Labor chemische Methoden AR 326 |
language |
English |
source |
Enthalten in Sensors and actuators <Lausanne> / B 326 volume:326 |
sourceStr |
Enthalten in Sensors and actuators <Lausanne> / B 326 volume:326 |
format_phy_str_mv |
Article |
bklname |
Sensorik Chemisches Labor chemische Methoden |
institution |
findex.gbv.de |
topic_facet |
Copper nanoclusters Graphene quantum dots GQD-CuNC nanohybrid Ratio fluorescence HTLV-I DNA |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Sensors and actuators <Lausanne> / B |
authorswithroles_txt_mv |
Chen, Junyang @@aut@@ Wang, Mengke @@aut@@ Zhou, Xiaobin @@aut@@ Nie, Yixin @@aut@@ Su, Xingguang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306710358 |
dewey-sort |
3530 |
id |
ELV004898567 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004898567</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142245.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.snb.2020.128847</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004898567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-4005(20)31194-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Junyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQDs) for the detection of HTLV-I DNA. Firstly, large amount of AT rich single DNA (o-DNA) can be released from the designed hairpin DNA in the presence of trace target DNA via exonuclease III assisted target recycling amplification strategy. Then, the released o-DNA hybridized with the complementary DNA1 which was modified on the surface of GQDs, and the formed hybridized DNA with blunt 3′-hydroxylated terminus that couldn’t be digested by exonuclease I could act as the template for the generation of fluorescent CuNCs. While in the absence of target DNA, the o-DNA couldn’t be released, thus the DNA1 with 3′overhang ends could be degraded by exonuclease I, which resulted in the in-situ generation of fluorescent CuNCs on the surface of GQDs was blocked owing to the lack of DNA template. The GQD fluorescence in the GQD-CuNC nanohybrid was almost uninfluenced during the whole process. Therefore, with the GQD serving as the reference and CuNC acting as the reporter signal, there was an excellent linear relationship between the change of fluorescence intensity ratio (F595/F445) and the concentration of HTLV-I DNA in the range of 20 pM-12 nM with a detection limit of 10 pM. Furthermore, the biosensor exhibited satisfactory results for monitoring the presence of HTLV-I DNA in human serum.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper nanoclusters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene quantum dots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GQD-CuNC nanohybrid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ratio fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HTLV-I DNA</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Mengke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Xiaobin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nie, Yixin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Xingguang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3053-4612</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sensors and actuators <Lausanne> / B</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">326</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710358</subfield><subfield code="w">(DE-600)1500731-5</subfield><subfield code="w">(DE-576)082435855</subfield><subfield code="x">0925-4005</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">326</subfield></datafield></record></collection>
|
author |
Chen, Junyang |
spellingShingle |
Chen, Junyang ddc 530 bkl 50.22 bkl 35.07 misc Copper nanoclusters misc Graphene quantum dots misc GQD-CuNC nanohybrid misc Ratio fluorescence misc HTLV-I DNA Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters |
authorStr |
Chen, Junyang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306710358 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0925-4005 |
topic_title |
530 620 DE-600 50.22 bkl 35.07 bkl Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters Copper nanoclusters Graphene quantum dots GQD-CuNC nanohybrid Ratio fluorescence HTLV-I DNA |
topic |
ddc 530 bkl 50.22 bkl 35.07 misc Copper nanoclusters misc Graphene quantum dots misc GQD-CuNC nanohybrid misc Ratio fluorescence misc HTLV-I DNA |
topic_unstemmed |
ddc 530 bkl 50.22 bkl 35.07 misc Copper nanoclusters misc Graphene quantum dots misc GQD-CuNC nanohybrid misc Ratio fluorescence misc HTLV-I DNA |
topic_browse |
ddc 530 bkl 50.22 bkl 35.07 misc Copper nanoclusters misc Graphene quantum dots misc GQD-CuNC nanohybrid misc Ratio fluorescence misc HTLV-I DNA |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors and actuators <Lausanne> / B |
hierarchy_parent_id |
306710358 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Sensors and actuators <Lausanne> / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 |
title |
Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters |
ctrlnum |
(DE-627)ELV004898567 (ELSEVIER)S0925-4005(20)31194-1 |
title_full |
Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters |
author_sort |
Chen, Junyang |
journal |
Sensors and actuators <Lausanne> / B |
journalStr |
Sensors and actuators <Lausanne> / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Chen, Junyang Wang, Mengke Zhou, Xiaobin Nie, Yixin Su, Xingguang |
container_volume |
326 |
class |
530 620 DE-600 50.22 bkl 35.07 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Junyang |
doi_str_mv |
10.1016/j.snb.2020.128847 |
normlink |
(ORCID)0000-0003-3053-4612 |
normlink_prefix_str_mv |
(orcid)0000-0003-3053-4612 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
highly sensitive label-free fluorescence determination of lymphotropic virus dna based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters |
title_auth |
Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters |
abstract |
Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQDs) for the detection of HTLV-I DNA. Firstly, large amount of AT rich single DNA (o-DNA) can be released from the designed hairpin DNA in the presence of trace target DNA via exonuclease III assisted target recycling amplification strategy. Then, the released o-DNA hybridized with the complementary DNA1 which was modified on the surface of GQDs, and the formed hybridized DNA with blunt 3′-hydroxylated terminus that couldn’t be digested by exonuclease I could act as the template for the generation of fluorescent CuNCs. While in the absence of target DNA, the o-DNA couldn’t be released, thus the DNA1 with 3′overhang ends could be degraded by exonuclease I, which resulted in the in-situ generation of fluorescent CuNCs on the surface of GQDs was blocked owing to the lack of DNA template. The GQD fluorescence in the GQD-CuNC nanohybrid was almost uninfluenced during the whole process. Therefore, with the GQD serving as the reference and CuNC acting as the reporter signal, there was an excellent linear relationship between the change of fluorescence intensity ratio (F595/F445) and the concentration of HTLV-I DNA in the range of 20 pM-12 nM with a detection limit of 10 pM. Furthermore, the biosensor exhibited satisfactory results for monitoring the presence of HTLV-I DNA in human serum. |
abstractGer |
Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQDs) for the detection of HTLV-I DNA. Firstly, large amount of AT rich single DNA (o-DNA) can be released from the designed hairpin DNA in the presence of trace target DNA via exonuclease III assisted target recycling amplification strategy. Then, the released o-DNA hybridized with the complementary DNA1 which was modified on the surface of GQDs, and the formed hybridized DNA with blunt 3′-hydroxylated terminus that couldn’t be digested by exonuclease I could act as the template for the generation of fluorescent CuNCs. While in the absence of target DNA, the o-DNA couldn’t be released, thus the DNA1 with 3′overhang ends could be degraded by exonuclease I, which resulted in the in-situ generation of fluorescent CuNCs on the surface of GQDs was blocked owing to the lack of DNA template. The GQD fluorescence in the GQD-CuNC nanohybrid was almost uninfluenced during the whole process. Therefore, with the GQD serving as the reference and CuNC acting as the reporter signal, there was an excellent linear relationship between the change of fluorescence intensity ratio (F595/F445) and the concentration of HTLV-I DNA in the range of 20 pM-12 nM with a detection limit of 10 pM. Furthermore, the biosensor exhibited satisfactory results for monitoring the presence of HTLV-I DNA in human serum. |
abstract_unstemmed |
Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQDs) for the detection of HTLV-I DNA. Firstly, large amount of AT rich single DNA (o-DNA) can be released from the designed hairpin DNA in the presence of trace target DNA via exonuclease III assisted target recycling amplification strategy. Then, the released o-DNA hybridized with the complementary DNA1 which was modified on the surface of GQDs, and the formed hybridized DNA with blunt 3′-hydroxylated terminus that couldn’t be digested by exonuclease I could act as the template for the generation of fluorescent CuNCs. While in the absence of target DNA, the o-DNA couldn’t be released, thus the DNA1 with 3′overhang ends could be degraded by exonuclease I, which resulted in the in-situ generation of fluorescent CuNCs on the surface of GQDs was blocked owing to the lack of DNA template. The GQD fluorescence in the GQD-CuNC nanohybrid was almost uninfluenced during the whole process. Therefore, with the GQD serving as the reference and CuNC acting as the reporter signal, there was an excellent linear relationship between the change of fluorescence intensity ratio (F595/F445) and the concentration of HTLV-I DNA in the range of 20 pM-12 nM with a detection limit of 10 pM. Furthermore, the biosensor exhibited satisfactory results for monitoring the presence of HTLV-I DNA in human serum. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters |
remote_bool |
true |
author2 |
Wang, Mengke Zhou, Xiaobin Nie, Yixin Su, Xingguang |
author2Str |
Wang, Mengke Zhou, Xiaobin Nie, Yixin Su, Xingguang |
ppnlink |
306710358 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.snb.2020.128847 |
up_date |
2024-07-07T00:30:42.629Z |
_version_ |
1803878130130092032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004898567</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142245.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.snb.2020.128847</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004898567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-4005(20)31194-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Junyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly sensitive label-free fluorescence determination of lymphotropic virus DNA based on exonuclease assisted target recycling amplification and in-situ generation of fluorescent copper nanoclusters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Specific and sensitive detection of target DNA plays a significant role in clinical diagnosis and biomedical research. Herein, a sensitive ratio fluorescence biosensor was constructed based on in-situ generation of fluorescent copper nanoclusters (CuNCs) on the DNA modified graphene quantum dots (GQDs) for the detection of HTLV-I DNA. Firstly, large amount of AT rich single DNA (o-DNA) can be released from the designed hairpin DNA in the presence of trace target DNA via exonuclease III assisted target recycling amplification strategy. Then, the released o-DNA hybridized with the complementary DNA1 which was modified on the surface of GQDs, and the formed hybridized DNA with blunt 3′-hydroxylated terminus that couldn’t be digested by exonuclease I could act as the template for the generation of fluorescent CuNCs. While in the absence of target DNA, the o-DNA couldn’t be released, thus the DNA1 with 3′overhang ends could be degraded by exonuclease I, which resulted in the in-situ generation of fluorescent CuNCs on the surface of GQDs was blocked owing to the lack of DNA template. The GQD fluorescence in the GQD-CuNC nanohybrid was almost uninfluenced during the whole process. Therefore, with the GQD serving as the reference and CuNC acting as the reporter signal, there was an excellent linear relationship between the change of fluorescence intensity ratio (F595/F445) and the concentration of HTLV-I DNA in the range of 20 pM-12 nM with a detection limit of 10 pM. Furthermore, the biosensor exhibited satisfactory results for monitoring the presence of HTLV-I DNA in human serum.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper nanoclusters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene quantum dots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GQD-CuNC nanohybrid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ratio fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HTLV-I DNA</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Mengke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Xiaobin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nie, Yixin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Xingguang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3053-4612</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sensors and actuators <Lausanne> / B</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">326</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710358</subfield><subfield code="w">(DE-600)1500731-5</subfield><subfield code="w">(DE-576)082435855</subfield><subfield code="x">0925-4005</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">326</subfield></datafield></record></collection>
|
score |
7.3996077 |