SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage
Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in...
Ausführliche Beschreibung
Autor*in: |
Vellimana, Ananth K. [verfasserIn] Aum, Diane J. [verfasserIn] Diwan, Deepti [verfasserIn] Clarke, Julian V. [verfasserIn] Nelson, James W. [verfasserIn] Lawrence, Molly [verfasserIn] Han, Byung Hee [verfasserIn] Gidday, Jeffrey M. [verfasserIn] Zipfel, Gregory J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Experimental neurology - Amsterdam [u.a.] : Elsevier, 1959, 334 |
---|---|
Übergeordnetes Werk: |
volume:334 |
DOI / URN: |
10.1016/j.expneurol.2020.113484 |
---|
Katalog-ID: |
ELV004908562 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004908562 | ||
003 | DE-627 | ||
005 | 20230524161552.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230503s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.expneurol.2020.113484 |2 doi | |
035 | |a (DE-627)ELV004908562 | ||
035 | |a (ELSEVIER)S0014-4886(20)30315-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q DE-600 |
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Vellimana, Ananth K. |e verfasserin |4 aut | |
245 | 1 | 0 | |a SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.Methods: Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).Results: Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.Conclusion: SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH. | ||
650 | 4 | |a Subarachnoid hemorrhage | |
650 | 4 | |a Delayed cerebral ischemia | |
650 | 4 | |a Vasospasm | |
650 | 4 | |a Resveratrol | |
650 | 4 | |a SIRT1 | |
650 | 4 | |a Sirtuin | |
700 | 1 | |a Aum, Diane J. |e verfasserin |4 aut | |
700 | 1 | |a Diwan, Deepti |e verfasserin |4 aut | |
700 | 1 | |a Clarke, Julian V. |e verfasserin |4 aut | |
700 | 1 | |a Nelson, James W. |e verfasserin |4 aut | |
700 | 1 | |a Lawrence, Molly |e verfasserin |4 aut | |
700 | 1 | |a Han, Byung Hee |e verfasserin |4 aut | |
700 | 1 | |a Gidday, Jeffrey M. |e verfasserin |4 aut | |
700 | 1 | |a Zipfel, Gregory J. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Experimental neurology |d Amsterdam [u.a.] : Elsevier, 1959 |g 334 |h Online-Ressource |w (DE-627)266018106 |w (DE-600)1466932-8 |w (DE-576)106845926 |x 1090-2430 |7 nnns |
773 | 1 | 8 | |g volume:334 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 44.90 |j Neurologie |
951 | |a AR | ||
952 | |d 334 |
author_variant |
a k v ak akv d j a dj dja d d dd j v c jv jvc j w n jw jwn m l ml b h h bh bhh j m g jm jmg g j z gj gjz |
---|---|
matchkey_str |
article:10902430:2020----::itmdaehpxcrcniinnidcdteutoonuoaclryfntof |
hierarchy_sort_str |
2020 |
bklnumber |
44.90 |
publishDate |
2020 |
allfields |
10.1016/j.expneurol.2020.113484 doi (DE-627)ELV004908562 (ELSEVIER)S0014-4886(20)30315-0 DE-627 ger DE-627 rda eng 610 DE-600 44.90 bkl Vellimana, Ananth K. verfasserin aut SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.Methods: Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).Results: Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.Conclusion: SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH. Subarachnoid hemorrhage Delayed cerebral ischemia Vasospasm Resveratrol SIRT1 Sirtuin Aum, Diane J. verfasserin aut Diwan, Deepti verfasserin aut Clarke, Julian V. verfasserin aut Nelson, James W. verfasserin aut Lawrence, Molly verfasserin aut Han, Byung Hee verfasserin aut Gidday, Jeffrey M. verfasserin aut Zipfel, Gregory J. verfasserin aut Enthalten in Experimental neurology Amsterdam [u.a.] : Elsevier, 1959 334 Online-Ressource (DE-627)266018106 (DE-600)1466932-8 (DE-576)106845926 1090-2430 nnns volume:334 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.90 Neurologie AR 334 |
spelling |
10.1016/j.expneurol.2020.113484 doi (DE-627)ELV004908562 (ELSEVIER)S0014-4886(20)30315-0 DE-627 ger DE-627 rda eng 610 DE-600 44.90 bkl Vellimana, Ananth K. verfasserin aut SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.Methods: Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).Results: Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.Conclusion: SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH. Subarachnoid hemorrhage Delayed cerebral ischemia Vasospasm Resveratrol SIRT1 Sirtuin Aum, Diane J. verfasserin aut Diwan, Deepti verfasserin aut Clarke, Julian V. verfasserin aut Nelson, James W. verfasserin aut Lawrence, Molly verfasserin aut Han, Byung Hee verfasserin aut Gidday, Jeffrey M. verfasserin aut Zipfel, Gregory J. verfasserin aut Enthalten in Experimental neurology Amsterdam [u.a.] : Elsevier, 1959 334 Online-Ressource (DE-627)266018106 (DE-600)1466932-8 (DE-576)106845926 1090-2430 nnns volume:334 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.90 Neurologie AR 334 |
allfields_unstemmed |
10.1016/j.expneurol.2020.113484 doi (DE-627)ELV004908562 (ELSEVIER)S0014-4886(20)30315-0 DE-627 ger DE-627 rda eng 610 DE-600 44.90 bkl Vellimana, Ananth K. verfasserin aut SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.Methods: Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).Results: Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.Conclusion: SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH. Subarachnoid hemorrhage Delayed cerebral ischemia Vasospasm Resveratrol SIRT1 Sirtuin Aum, Diane J. verfasserin aut Diwan, Deepti verfasserin aut Clarke, Julian V. verfasserin aut Nelson, James W. verfasserin aut Lawrence, Molly verfasserin aut Han, Byung Hee verfasserin aut Gidday, Jeffrey M. verfasserin aut Zipfel, Gregory J. verfasserin aut Enthalten in Experimental neurology Amsterdam [u.a.] : Elsevier, 1959 334 Online-Ressource (DE-627)266018106 (DE-600)1466932-8 (DE-576)106845926 1090-2430 nnns volume:334 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.90 Neurologie AR 334 |
allfieldsGer |
10.1016/j.expneurol.2020.113484 doi (DE-627)ELV004908562 (ELSEVIER)S0014-4886(20)30315-0 DE-627 ger DE-627 rda eng 610 DE-600 44.90 bkl Vellimana, Ananth K. verfasserin aut SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.Methods: Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).Results: Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.Conclusion: SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH. Subarachnoid hemorrhage Delayed cerebral ischemia Vasospasm Resveratrol SIRT1 Sirtuin Aum, Diane J. verfasserin aut Diwan, Deepti verfasserin aut Clarke, Julian V. verfasserin aut Nelson, James W. verfasserin aut Lawrence, Molly verfasserin aut Han, Byung Hee verfasserin aut Gidday, Jeffrey M. verfasserin aut Zipfel, Gregory J. verfasserin aut Enthalten in Experimental neurology Amsterdam [u.a.] : Elsevier, 1959 334 Online-Ressource (DE-627)266018106 (DE-600)1466932-8 (DE-576)106845926 1090-2430 nnns volume:334 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.90 Neurologie AR 334 |
allfieldsSound |
10.1016/j.expneurol.2020.113484 doi (DE-627)ELV004908562 (ELSEVIER)S0014-4886(20)30315-0 DE-627 ger DE-627 rda eng 610 DE-600 44.90 bkl Vellimana, Ananth K. verfasserin aut SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.Methods: Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).Results: Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.Conclusion: SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH. Subarachnoid hemorrhage Delayed cerebral ischemia Vasospasm Resveratrol SIRT1 Sirtuin Aum, Diane J. verfasserin aut Diwan, Deepti verfasserin aut Clarke, Julian V. verfasserin aut Nelson, James W. verfasserin aut Lawrence, Molly verfasserin aut Han, Byung Hee verfasserin aut Gidday, Jeffrey M. verfasserin aut Zipfel, Gregory J. verfasserin aut Enthalten in Experimental neurology Amsterdam [u.a.] : Elsevier, 1959 334 Online-Ressource (DE-627)266018106 (DE-600)1466932-8 (DE-576)106845926 1090-2430 nnns volume:334 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.90 Neurologie AR 334 |
language |
English |
source |
Enthalten in Experimental neurology 334 volume:334 |
sourceStr |
Enthalten in Experimental neurology 334 volume:334 |
format_phy_str_mv |
Article |
bklname |
Neurologie |
institution |
findex.gbv.de |
topic_facet |
Subarachnoid hemorrhage Delayed cerebral ischemia Vasospasm Resveratrol SIRT1 Sirtuin |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Experimental neurology |
authorswithroles_txt_mv |
Vellimana, Ananth K. @@aut@@ Aum, Diane J. @@aut@@ Diwan, Deepti @@aut@@ Clarke, Julian V. @@aut@@ Nelson, James W. @@aut@@ Lawrence, Molly @@aut@@ Han, Byung Hee @@aut@@ Gidday, Jeffrey M. @@aut@@ Zipfel, Gregory J. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
266018106 |
dewey-sort |
3610 |
id |
ELV004908562 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004908562</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161552.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.expneurol.2020.113484</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004908562</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0014-4886(20)30315-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vellimana, Ananth K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.Methods: Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).Results: Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.Conclusion: SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subarachnoid hemorrhage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delayed cerebral ischemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vasospasm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resveratrol</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SIRT1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sirtuin</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aum, Diane J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Diwan, Deepti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clarke, Julian V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelson, James W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lawrence, Molly</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Byung Hee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gidday, Jeffrey M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zipfel, Gregory J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental neurology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1959</subfield><subfield code="g">334</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266018106</subfield><subfield code="w">(DE-600)1466932-8</subfield><subfield code="w">(DE-576)106845926</subfield><subfield code="x">1090-2430</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">334</subfield></datafield></record></collection>
|
author |
Vellimana, Ananth K. |
spellingShingle |
Vellimana, Ananth K. ddc 610 bkl 44.90 misc Subarachnoid hemorrhage misc Delayed cerebral ischemia misc Vasospasm misc Resveratrol misc SIRT1 misc Sirtuin SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage |
authorStr |
Vellimana, Ananth K. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266018106 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1090-2430 |
topic_title |
610 DE-600 44.90 bkl SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage Subarachnoid hemorrhage Delayed cerebral ischemia Vasospasm Resveratrol SIRT1 Sirtuin |
topic |
ddc 610 bkl 44.90 misc Subarachnoid hemorrhage misc Delayed cerebral ischemia misc Vasospasm misc Resveratrol misc SIRT1 misc Sirtuin |
topic_unstemmed |
ddc 610 bkl 44.90 misc Subarachnoid hemorrhage misc Delayed cerebral ischemia misc Vasospasm misc Resveratrol misc SIRT1 misc Sirtuin |
topic_browse |
ddc 610 bkl 44.90 misc Subarachnoid hemorrhage misc Delayed cerebral ischemia misc Vasospasm misc Resveratrol misc SIRT1 misc Sirtuin |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Experimental neurology |
hierarchy_parent_id |
266018106 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Experimental neurology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266018106 (DE-600)1466932-8 (DE-576)106845926 |
title |
SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage |
ctrlnum |
(DE-627)ELV004908562 (ELSEVIER)S0014-4886(20)30315-0 |
title_full |
SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage |
author_sort |
Vellimana, Ananth K. |
journal |
Experimental neurology |
journalStr |
Experimental neurology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Vellimana, Ananth K. Aum, Diane J. Diwan, Deepti Clarke, Julian V. Nelson, James W. Lawrence, Molly Han, Byung Hee Gidday, Jeffrey M. Zipfel, Gregory J. |
container_volume |
334 |
class |
610 DE-600 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Vellimana, Ananth K. |
doi_str_mv |
10.1016/j.expneurol.2020.113484 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
sirt1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage |
title_auth |
SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage |
abstract |
Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.Methods: Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).Results: Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.Conclusion: SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH. |
abstractGer |
Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.Methods: Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).Results: Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.Conclusion: SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH. |
abstract_unstemmed |
Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.Methods: Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).Results: Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.Conclusion: SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage |
remote_bool |
true |
author2 |
Aum, Diane J. Diwan, Deepti Clarke, Julian V. Nelson, James W. Lawrence, Molly Han, Byung Hee Gidday, Jeffrey M. Zipfel, Gregory J. |
author2Str |
Aum, Diane J. Diwan, Deepti Clarke, Julian V. Nelson, James W. Lawrence, Molly Han, Byung Hee Gidday, Jeffrey M. Zipfel, Gregory J. |
ppnlink |
266018106 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.expneurol.2020.113484 |
up_date |
2024-07-07T00:32:41.262Z |
_version_ |
1803878254525808640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004908562</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161552.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.expneurol.2020.113484</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004908562</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0014-4886(20)30315-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vellimana, Ananth K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and purpose: Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.Methods: Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).Results: Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.Conclusion: SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subarachnoid hemorrhage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delayed cerebral ischemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vasospasm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resveratrol</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SIRT1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sirtuin</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aum, Diane J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Diwan, Deepti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clarke, Julian V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelson, James W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lawrence, Molly</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Byung Hee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gidday, Jeffrey M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zipfel, Gregory J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental neurology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1959</subfield><subfield code="g">334</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266018106</subfield><subfield code="w">(DE-600)1466932-8</subfield><subfield code="w">(DE-576)106845926</subfield><subfield code="x">1090-2430</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">334</subfield></datafield></record></collection>
|
score |
7.4012566 |