Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion
Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural dete...
Ausführliche Beschreibung
Autor*in: |
Fan, Wei [verfasserIn] Sun, Yang [verfasserIn] Yang, Cancan [verfasserIn] Sun, Wenbiao [verfasserIn] He, Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering structures - Amsterdam [u.a.] : Elsevier Science, 1978, 225 |
---|---|
Übergeordnetes Werk: |
volume:225 |
DOI / URN: |
10.1016/j.engstruct.2020.111279 |
---|
Katalog-ID: |
ELV004977300 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004977300 | ||
003 | DE-627 | ||
005 | 20230524143340.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230503s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engstruct.2020.111279 |2 doi | |
035 | |a (DE-627)ELV004977300 | ||
035 | |a (ELSEVIER)S0141-0296(20)33880-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 38.38 |2 bkl | ||
084 | |a 56.20 |2 bkl | ||
084 | |a 56.11 |2 bkl | ||
100 | 1 | |a Fan, Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural deterioration) hazards. To achieve this goal, this paper will develop a novel fragility assessment framework for reinforced concrete (RC) bridges under vessel collision with the corrosion-induced structural deterioration being considered. The cornerstone of this fragility assessment framework is the computational model with the capability of accurately predicting vessel impact response and corrosion-induced deterioration measures. In doing so, detailed finite element (FE) modeling approaches, including reinforcement bond-slip effects, are firstly developed and validated by the experimental results. The effects of corrosion are characterized by a series of deterioration measures that can be implemented into FE models. These FE modeling approaches were utilized to model the baseline bridge. Three different exposure periods (i.e., 0, 50, and 100 years) and two types of vessel (barge and ship) are considered. Driven by the response data generated by the FE model, a surrogate model is developed to feature both accurate vessel-impact response estimates and negligible computation cost. This surrogate model is then employed to create fragility curves using Monte Carlo methods. Fragility analysis results have indicated the significant role played by corrosion in increasing the vulnerability of RC bridges under vessel collision throughout the lifetime of the baseline bridge. The probability of bridge collapse rises by almost 100% near the end of the bridge’s life. Significant differences were found for the damage evolution of the deteriorated bridge under barge impacts and ship impacts. Particular critical impact speeds were observed in the barge-impact response, but not during ship collisions. | ||
650 | 4 | |a Vessel impact | |
650 | 4 | |a Fragility analysis | |
650 | 4 | |a Corrosion deterioration | |
650 | 4 | |a simplified FE modeling | |
650 | 4 | |a Surrogate model | |
700 | 1 | |a Sun, Yang |e verfasserin |4 aut | |
700 | 1 | |a Yang, Cancan |e verfasserin |4 aut | |
700 | 1 | |a Sun, Wenbiao |e verfasserin |4 aut | |
700 | 1 | |a He, Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Engineering structures |d Amsterdam [u.a.] : Elsevier Science, 1978 |g 225 |h Online-Ressource |w (DE-627)320423344 |w (DE-600)2002833-7 |w (DE-576)259271195 |x 0141-0296 |7 nnns |
773 | 1 | 8 | |g volume:225 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.38 |j Seismologie |
936 | b | k | |a 56.20 |j Ingenieurgeologie |j Bodenmechanik |
936 | b | k | |a 56.11 |j Baukonstruktion |
951 | |a AR | ||
952 | |d 225 |
author_variant |
w f wf y s ys c y cy w s ws y h yh |
---|---|
matchkey_str |
article:01410296:2020----::sesnteepnenfaiiyfoceerdeudruthzrefco |
hierarchy_sort_str |
2020 |
bklnumber |
38.38 56.20 56.11 |
publishDate |
2020 |
allfields |
10.1016/j.engstruct.2020.111279 doi (DE-627)ELV004977300 (ELSEVIER)S0141-0296(20)33880-3 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Fan, Wei verfasserin aut Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural deterioration) hazards. To achieve this goal, this paper will develop a novel fragility assessment framework for reinforced concrete (RC) bridges under vessel collision with the corrosion-induced structural deterioration being considered. The cornerstone of this fragility assessment framework is the computational model with the capability of accurately predicting vessel impact response and corrosion-induced deterioration measures. In doing so, detailed finite element (FE) modeling approaches, including reinforcement bond-slip effects, are firstly developed and validated by the experimental results. The effects of corrosion are characterized by a series of deterioration measures that can be implemented into FE models. These FE modeling approaches were utilized to model the baseline bridge. Three different exposure periods (i.e., 0, 50, and 100 years) and two types of vessel (barge and ship) are considered. Driven by the response data generated by the FE model, a surrogate model is developed to feature both accurate vessel-impact response estimates and negligible computation cost. This surrogate model is then employed to create fragility curves using Monte Carlo methods. Fragility analysis results have indicated the significant role played by corrosion in increasing the vulnerability of RC bridges under vessel collision throughout the lifetime of the baseline bridge. The probability of bridge collapse rises by almost 100% near the end of the bridge’s life. Significant differences were found for the damage evolution of the deteriorated bridge under barge impacts and ship impacts. Particular critical impact speeds were observed in the barge-impact response, but not during ship collisions. Vessel impact Fragility analysis Corrosion deterioration simplified FE modeling Surrogate model Sun, Yang verfasserin aut Yang, Cancan verfasserin aut Sun, Wenbiao verfasserin aut He, Yang verfasserin aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 225 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:225 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 225 |
spelling |
10.1016/j.engstruct.2020.111279 doi (DE-627)ELV004977300 (ELSEVIER)S0141-0296(20)33880-3 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Fan, Wei verfasserin aut Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural deterioration) hazards. To achieve this goal, this paper will develop a novel fragility assessment framework for reinforced concrete (RC) bridges under vessel collision with the corrosion-induced structural deterioration being considered. The cornerstone of this fragility assessment framework is the computational model with the capability of accurately predicting vessel impact response and corrosion-induced deterioration measures. In doing so, detailed finite element (FE) modeling approaches, including reinforcement bond-slip effects, are firstly developed and validated by the experimental results. The effects of corrosion are characterized by a series of deterioration measures that can be implemented into FE models. These FE modeling approaches were utilized to model the baseline bridge. Three different exposure periods (i.e., 0, 50, and 100 years) and two types of vessel (barge and ship) are considered. Driven by the response data generated by the FE model, a surrogate model is developed to feature both accurate vessel-impact response estimates and negligible computation cost. This surrogate model is then employed to create fragility curves using Monte Carlo methods. Fragility analysis results have indicated the significant role played by corrosion in increasing the vulnerability of RC bridges under vessel collision throughout the lifetime of the baseline bridge. The probability of bridge collapse rises by almost 100% near the end of the bridge’s life. Significant differences were found for the damage evolution of the deteriorated bridge under barge impacts and ship impacts. Particular critical impact speeds were observed in the barge-impact response, but not during ship collisions. Vessel impact Fragility analysis Corrosion deterioration simplified FE modeling Surrogate model Sun, Yang verfasserin aut Yang, Cancan verfasserin aut Sun, Wenbiao verfasserin aut He, Yang verfasserin aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 225 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:225 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 225 |
allfields_unstemmed |
10.1016/j.engstruct.2020.111279 doi (DE-627)ELV004977300 (ELSEVIER)S0141-0296(20)33880-3 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Fan, Wei verfasserin aut Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural deterioration) hazards. To achieve this goal, this paper will develop a novel fragility assessment framework for reinforced concrete (RC) bridges under vessel collision with the corrosion-induced structural deterioration being considered. The cornerstone of this fragility assessment framework is the computational model with the capability of accurately predicting vessel impact response and corrosion-induced deterioration measures. In doing so, detailed finite element (FE) modeling approaches, including reinforcement bond-slip effects, are firstly developed and validated by the experimental results. The effects of corrosion are characterized by a series of deterioration measures that can be implemented into FE models. These FE modeling approaches were utilized to model the baseline bridge. Three different exposure periods (i.e., 0, 50, and 100 years) and two types of vessel (barge and ship) are considered. Driven by the response data generated by the FE model, a surrogate model is developed to feature both accurate vessel-impact response estimates and negligible computation cost. This surrogate model is then employed to create fragility curves using Monte Carlo methods. Fragility analysis results have indicated the significant role played by corrosion in increasing the vulnerability of RC bridges under vessel collision throughout the lifetime of the baseline bridge. The probability of bridge collapse rises by almost 100% near the end of the bridge’s life. Significant differences were found for the damage evolution of the deteriorated bridge under barge impacts and ship impacts. Particular critical impact speeds were observed in the barge-impact response, but not during ship collisions. Vessel impact Fragility analysis Corrosion deterioration simplified FE modeling Surrogate model Sun, Yang verfasserin aut Yang, Cancan verfasserin aut Sun, Wenbiao verfasserin aut He, Yang verfasserin aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 225 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:225 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 225 |
allfieldsGer |
10.1016/j.engstruct.2020.111279 doi (DE-627)ELV004977300 (ELSEVIER)S0141-0296(20)33880-3 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Fan, Wei verfasserin aut Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural deterioration) hazards. To achieve this goal, this paper will develop a novel fragility assessment framework for reinforced concrete (RC) bridges under vessel collision with the corrosion-induced structural deterioration being considered. The cornerstone of this fragility assessment framework is the computational model with the capability of accurately predicting vessel impact response and corrosion-induced deterioration measures. In doing so, detailed finite element (FE) modeling approaches, including reinforcement bond-slip effects, are firstly developed and validated by the experimental results. The effects of corrosion are characterized by a series of deterioration measures that can be implemented into FE models. These FE modeling approaches were utilized to model the baseline bridge. Three different exposure periods (i.e., 0, 50, and 100 years) and two types of vessel (barge and ship) are considered. Driven by the response data generated by the FE model, a surrogate model is developed to feature both accurate vessel-impact response estimates and negligible computation cost. This surrogate model is then employed to create fragility curves using Monte Carlo methods. Fragility analysis results have indicated the significant role played by corrosion in increasing the vulnerability of RC bridges under vessel collision throughout the lifetime of the baseline bridge. The probability of bridge collapse rises by almost 100% near the end of the bridge’s life. Significant differences were found for the damage evolution of the deteriorated bridge under barge impacts and ship impacts. Particular critical impact speeds were observed in the barge-impact response, but not during ship collisions. Vessel impact Fragility analysis Corrosion deterioration simplified FE modeling Surrogate model Sun, Yang verfasserin aut Yang, Cancan verfasserin aut Sun, Wenbiao verfasserin aut He, Yang verfasserin aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 225 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:225 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 225 |
allfieldsSound |
10.1016/j.engstruct.2020.111279 doi (DE-627)ELV004977300 (ELSEVIER)S0141-0296(20)33880-3 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Fan, Wei verfasserin aut Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural deterioration) hazards. To achieve this goal, this paper will develop a novel fragility assessment framework for reinforced concrete (RC) bridges under vessel collision with the corrosion-induced structural deterioration being considered. The cornerstone of this fragility assessment framework is the computational model with the capability of accurately predicting vessel impact response and corrosion-induced deterioration measures. In doing so, detailed finite element (FE) modeling approaches, including reinforcement bond-slip effects, are firstly developed and validated by the experimental results. The effects of corrosion are characterized by a series of deterioration measures that can be implemented into FE models. These FE modeling approaches were utilized to model the baseline bridge. Three different exposure periods (i.e., 0, 50, and 100 years) and two types of vessel (barge and ship) are considered. Driven by the response data generated by the FE model, a surrogate model is developed to feature both accurate vessel-impact response estimates and negligible computation cost. This surrogate model is then employed to create fragility curves using Monte Carlo methods. Fragility analysis results have indicated the significant role played by corrosion in increasing the vulnerability of RC bridges under vessel collision throughout the lifetime of the baseline bridge. The probability of bridge collapse rises by almost 100% near the end of the bridge’s life. Significant differences were found for the damage evolution of the deteriorated bridge under barge impacts and ship impacts. Particular critical impact speeds were observed in the barge-impact response, but not during ship collisions. Vessel impact Fragility analysis Corrosion deterioration simplified FE modeling Surrogate model Sun, Yang verfasserin aut Yang, Cancan verfasserin aut Sun, Wenbiao verfasserin aut He, Yang verfasserin aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 225 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:225 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 225 |
language |
English |
source |
Enthalten in Engineering structures 225 volume:225 |
sourceStr |
Enthalten in Engineering structures 225 volume:225 |
format_phy_str_mv |
Article |
bklname |
Seismologie Ingenieurgeologie Bodenmechanik Baukonstruktion |
institution |
findex.gbv.de |
topic_facet |
Vessel impact Fragility analysis Corrosion deterioration simplified FE modeling Surrogate model |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Engineering structures |
authorswithroles_txt_mv |
Fan, Wei @@aut@@ Sun, Yang @@aut@@ Yang, Cancan @@aut@@ Sun, Wenbiao @@aut@@ He, Yang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320423344 |
dewey-sort |
3690 |
id |
ELV004977300 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004977300</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143340.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engstruct.2020.111279</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004977300</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-0296(20)33880-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fan, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural deterioration) hazards. To achieve this goal, this paper will develop a novel fragility assessment framework for reinforced concrete (RC) bridges under vessel collision with the corrosion-induced structural deterioration being considered. The cornerstone of this fragility assessment framework is the computational model with the capability of accurately predicting vessel impact response and corrosion-induced deterioration measures. In doing so, detailed finite element (FE) modeling approaches, including reinforcement bond-slip effects, are firstly developed and validated by the experimental results. The effects of corrosion are characterized by a series of deterioration measures that can be implemented into FE models. These FE modeling approaches were utilized to model the baseline bridge. Three different exposure periods (i.e., 0, 50, and 100 years) and two types of vessel (barge and ship) are considered. Driven by the response data generated by the FE model, a surrogate model is developed to feature both accurate vessel-impact response estimates and negligible computation cost. This surrogate model is then employed to create fragility curves using Monte Carlo methods. Fragility analysis results have indicated the significant role played by corrosion in increasing the vulnerability of RC bridges under vessel collision throughout the lifetime of the baseline bridge. The probability of bridge collapse rises by almost 100% near the end of the bridge’s life. Significant differences were found for the damage evolution of the deteriorated bridge under barge impacts and ship impacts. Particular critical impact speeds were observed in the barge-impact response, but not during ship collisions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vessel impact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fragility analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion deterioration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simplified FE modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surrogate model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Cancan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Wenbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">225</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423344</subfield><subfield code="w">(DE-600)2002833-7</subfield><subfield code="w">(DE-576)259271195</subfield><subfield code="x">0141-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:225</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.38</subfield><subfield code="j">Seismologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">225</subfield></datafield></record></collection>
|
author |
Fan, Wei |
spellingShingle |
Fan, Wei ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc Vessel impact misc Fragility analysis misc Corrosion deterioration misc simplified FE modeling misc Surrogate model Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion |
authorStr |
Fan, Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320423344 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0141-0296 |
topic_title |
690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion Vessel impact Fragility analysis Corrosion deterioration simplified FE modeling Surrogate model |
topic |
ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc Vessel impact misc Fragility analysis misc Corrosion deterioration misc simplified FE modeling misc Surrogate model |
topic_unstemmed |
ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc Vessel impact misc Fragility analysis misc Corrosion deterioration misc simplified FE modeling misc Surrogate model |
topic_browse |
ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc Vessel impact misc Fragility analysis misc Corrosion deterioration misc simplified FE modeling misc Surrogate model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering structures |
hierarchy_parent_id |
320423344 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Engineering structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 |
title |
Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion |
ctrlnum |
(DE-627)ELV004977300 (ELSEVIER)S0141-0296(20)33880-3 |
title_full |
Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion |
author_sort |
Fan, Wei |
journal |
Engineering structures |
journalStr |
Engineering structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Fan, Wei Sun, Yang Yang, Cancan Sun, Wenbiao He, Yang |
container_volume |
225 |
class |
690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Fan, Wei |
doi_str_mv |
10.1016/j.engstruct.2020.111279 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion |
title_auth |
Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion |
abstract |
Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural deterioration) hazards. To achieve this goal, this paper will develop a novel fragility assessment framework for reinforced concrete (RC) bridges under vessel collision with the corrosion-induced structural deterioration being considered. The cornerstone of this fragility assessment framework is the computational model with the capability of accurately predicting vessel impact response and corrosion-induced deterioration measures. In doing so, detailed finite element (FE) modeling approaches, including reinforcement bond-slip effects, are firstly developed and validated by the experimental results. The effects of corrosion are characterized by a series of deterioration measures that can be implemented into FE models. These FE modeling approaches were utilized to model the baseline bridge. Three different exposure periods (i.e., 0, 50, and 100 years) and two types of vessel (barge and ship) are considered. Driven by the response data generated by the FE model, a surrogate model is developed to feature both accurate vessel-impact response estimates and negligible computation cost. This surrogate model is then employed to create fragility curves using Monte Carlo methods. Fragility analysis results have indicated the significant role played by corrosion in increasing the vulnerability of RC bridges under vessel collision throughout the lifetime of the baseline bridge. The probability of bridge collapse rises by almost 100% near the end of the bridge’s life. Significant differences were found for the damage evolution of the deteriorated bridge under barge impacts and ship impacts. Particular critical impact speeds were observed in the barge-impact response, but not during ship collisions. |
abstractGer |
Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural deterioration) hazards. To achieve this goal, this paper will develop a novel fragility assessment framework for reinforced concrete (RC) bridges under vessel collision with the corrosion-induced structural deterioration being considered. The cornerstone of this fragility assessment framework is the computational model with the capability of accurately predicting vessel impact response and corrosion-induced deterioration measures. In doing so, detailed finite element (FE) modeling approaches, including reinforcement bond-slip effects, are firstly developed and validated by the experimental results. The effects of corrosion are characterized by a series of deterioration measures that can be implemented into FE models. These FE modeling approaches were utilized to model the baseline bridge. Three different exposure periods (i.e., 0, 50, and 100 years) and two types of vessel (barge and ship) are considered. Driven by the response data generated by the FE model, a surrogate model is developed to feature both accurate vessel-impact response estimates and negligible computation cost. This surrogate model is then employed to create fragility curves using Monte Carlo methods. Fragility analysis results have indicated the significant role played by corrosion in increasing the vulnerability of RC bridges under vessel collision throughout the lifetime of the baseline bridge. The probability of bridge collapse rises by almost 100% near the end of the bridge’s life. Significant differences were found for the damage evolution of the deteriorated bridge under barge impacts and ship impacts. Particular critical impact speeds were observed in the barge-impact response, but not during ship collisions. |
abstract_unstemmed |
Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural deterioration) hazards. To achieve this goal, this paper will develop a novel fragility assessment framework for reinforced concrete (RC) bridges under vessel collision with the corrosion-induced structural deterioration being considered. The cornerstone of this fragility assessment framework is the computational model with the capability of accurately predicting vessel impact response and corrosion-induced deterioration measures. In doing so, detailed finite element (FE) modeling approaches, including reinforcement bond-slip effects, are firstly developed and validated by the experimental results. The effects of corrosion are characterized by a series of deterioration measures that can be implemented into FE models. These FE modeling approaches were utilized to model the baseline bridge. Three different exposure periods (i.e., 0, 50, and 100 years) and two types of vessel (barge and ship) are considered. Driven by the response data generated by the FE model, a surrogate model is developed to feature both accurate vessel-impact response estimates and negligible computation cost. This surrogate model is then employed to create fragility curves using Monte Carlo methods. Fragility analysis results have indicated the significant role played by corrosion in increasing the vulnerability of RC bridges under vessel collision throughout the lifetime of the baseline bridge. The probability of bridge collapse rises by almost 100% near the end of the bridge’s life. Significant differences were found for the damage evolution of the deteriorated bridge under barge impacts and ship impacts. Particular critical impact speeds were observed in the barge-impact response, but not during ship collisions. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion |
remote_bool |
true |
author2 |
Sun, Yang Yang, Cancan Sun, Wenbiao He, Yang |
author2Str |
Sun, Yang Yang, Cancan Sun, Wenbiao He, Yang |
ppnlink |
320423344 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.engstruct.2020.111279 |
up_date |
2024-07-07T00:46:23.295Z |
_version_ |
1803879116489883648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004977300</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143340.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engstruct.2020.111279</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004977300</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-0296(20)33880-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fan, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bridges crossing navigable waterways have a high risk for vessel collision hazard, and are meanwhile experiencing significant ‘aging’ hazard due to the surrounding aggressive environments. These bridges must be designed to be resilient to both episodic (vessel collision) and chronic (structural deterioration) hazards. To achieve this goal, this paper will develop a novel fragility assessment framework for reinforced concrete (RC) bridges under vessel collision with the corrosion-induced structural deterioration being considered. The cornerstone of this fragility assessment framework is the computational model with the capability of accurately predicting vessel impact response and corrosion-induced deterioration measures. In doing so, detailed finite element (FE) modeling approaches, including reinforcement bond-slip effects, are firstly developed and validated by the experimental results. The effects of corrosion are characterized by a series of deterioration measures that can be implemented into FE models. These FE modeling approaches were utilized to model the baseline bridge. Three different exposure periods (i.e., 0, 50, and 100 years) and two types of vessel (barge and ship) are considered. Driven by the response data generated by the FE model, a surrogate model is developed to feature both accurate vessel-impact response estimates and negligible computation cost. This surrogate model is then employed to create fragility curves using Monte Carlo methods. Fragility analysis results have indicated the significant role played by corrosion in increasing the vulnerability of RC bridges under vessel collision throughout the lifetime of the baseline bridge. The probability of bridge collapse rises by almost 100% near the end of the bridge’s life. Significant differences were found for the damage evolution of the deteriorated bridge under barge impacts and ship impacts. Particular critical impact speeds were observed in the barge-impact response, but not during ship collisions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vessel impact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fragility analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion deterioration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simplified FE modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surrogate model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Cancan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Wenbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">225</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423344</subfield><subfield code="w">(DE-600)2002833-7</subfield><subfield code="w">(DE-576)259271195</subfield><subfield code="x">0141-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:225</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.38</subfield><subfield code="j">Seismologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">225</subfield></datafield></record></collection>
|
score |
7.4013834 |