Constrained optimal design of seismic base absorbers based on an extended KDamper concept
In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optim...
Ausführliche Beschreibung
Autor*in: |
Kapasakalis, Konstantinos A. [verfasserIn] Antoniadis, Ioannis A. [verfasserIn] Sapountzakis, Evangelos J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering structures - Amsterdam [u.a.] : Elsevier Science, 1978, 226 |
---|---|
Übergeordnetes Werk: |
volume:226 |
DOI / URN: |
10.1016/j.engstruct.2020.111312 |
---|
Katalog-ID: |
ELV005043689 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005043689 | ||
003 | DE-627 | ||
005 | 20230524143341.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230503s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engstruct.2020.111312 |2 doi | |
035 | |a (DE-627)ELV005043689 | ||
035 | |a (ELSEVIER)S0141-0296(20)33913-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 38.38 |2 bkl | ||
084 | |a 56.20 |2 bkl | ||
084 | |a 56.11 |2 bkl | ||
100 | 1 | |a Kapasakalis, Konstantinos A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Constrained optimal design of seismic base absorbers based on an extended KDamper concept |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optimal system parameters. The EKD is designed according to seismic design codes and the constraints and limitations of the EKD components are evaluated based on engineering criteria. In order to better observe the efficiency of the proposed configuration, an acceleration filter is placed, as an additional constraint. Therefore, each set of optimized parameters of the EKD refers to the maximum structure acceleration, expressed as a percentage of PGA. A database of artificial accelerograms, compatible with the EC8 response spectra is generated. Sensitivity analysis is performed, and the effect of detuning is observed. Subsequently, the EKD is implemented as a seismic base absorber in a multi-story building. The performance of the proposed control strategy is compared not only to the original structure but also to the cases of conventional and highly damped base isolation systems, as well as to the KDamper. The EKD presents an improved superstructure dynamic behavior, comparable with a base isolated system. At the same time, the base relative displacement is drastically reduced, in the order of a few centimeters, rendering the implementation of the EKD feasible using conventional structural elements, without the need for special types of bearings. In addition, the base shear is reduced, as compared to the original structure, with the implementation of the proposed configuration, and thus, EKD can be considered a possible retrofitting option for seismic protection. | ||
650 | 4 | |a KDamper | |
650 | 4 | |a Seismic protection | |
650 | 4 | |a Negative stiffness | |
650 | 4 | |a Seismic base absorbers | |
650 | 4 | |a Seismic isolation | |
650 | 4 | |a Optimization | |
700 | 1 | |a Antoniadis, Ioannis A. |e verfasserin |4 aut | |
700 | 1 | |a Sapountzakis, Evangelos J. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Engineering structures |d Amsterdam [u.a.] : Elsevier Science, 1978 |g 226 |h Online-Ressource |w (DE-627)320423344 |w (DE-600)2002833-7 |w (DE-576)259271195 |x 0141-0296 |7 nnns |
773 | 1 | 8 | |g volume:226 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.38 |j Seismologie |
936 | b | k | |a 56.20 |j Ingenieurgeologie |j Bodenmechanik |
936 | b | k | |a 56.11 |j Baukonstruktion |
951 | |a AR | ||
952 | |d 226 |
author_variant |
k a k ka kak i a a ia iaa e j s ej ejs |
---|---|
matchkey_str |
article:01410296:2020----::osrieotmleinfesibsasresaeoae |
hierarchy_sort_str |
2020 |
bklnumber |
38.38 56.20 56.11 |
publishDate |
2020 |
allfields |
10.1016/j.engstruct.2020.111312 doi (DE-627)ELV005043689 (ELSEVIER)S0141-0296(20)33913-4 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Kapasakalis, Konstantinos A. verfasserin aut Constrained optimal design of seismic base absorbers based on an extended KDamper concept 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optimal system parameters. The EKD is designed according to seismic design codes and the constraints and limitations of the EKD components are evaluated based on engineering criteria. In order to better observe the efficiency of the proposed configuration, an acceleration filter is placed, as an additional constraint. Therefore, each set of optimized parameters of the EKD refers to the maximum structure acceleration, expressed as a percentage of PGA. A database of artificial accelerograms, compatible with the EC8 response spectra is generated. Sensitivity analysis is performed, and the effect of detuning is observed. Subsequently, the EKD is implemented as a seismic base absorber in a multi-story building. The performance of the proposed control strategy is compared not only to the original structure but also to the cases of conventional and highly damped base isolation systems, as well as to the KDamper. The EKD presents an improved superstructure dynamic behavior, comparable with a base isolated system. At the same time, the base relative displacement is drastically reduced, in the order of a few centimeters, rendering the implementation of the EKD feasible using conventional structural elements, without the need for special types of bearings. In addition, the base shear is reduced, as compared to the original structure, with the implementation of the proposed configuration, and thus, EKD can be considered a possible retrofitting option for seismic protection. KDamper Seismic protection Negative stiffness Seismic base absorbers Seismic isolation Optimization Antoniadis, Ioannis A. verfasserin aut Sapountzakis, Evangelos J. verfasserin aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 226 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:226 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 226 |
spelling |
10.1016/j.engstruct.2020.111312 doi (DE-627)ELV005043689 (ELSEVIER)S0141-0296(20)33913-4 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Kapasakalis, Konstantinos A. verfasserin aut Constrained optimal design of seismic base absorbers based on an extended KDamper concept 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optimal system parameters. The EKD is designed according to seismic design codes and the constraints and limitations of the EKD components are evaluated based on engineering criteria. In order to better observe the efficiency of the proposed configuration, an acceleration filter is placed, as an additional constraint. Therefore, each set of optimized parameters of the EKD refers to the maximum structure acceleration, expressed as a percentage of PGA. A database of artificial accelerograms, compatible with the EC8 response spectra is generated. Sensitivity analysis is performed, and the effect of detuning is observed. Subsequently, the EKD is implemented as a seismic base absorber in a multi-story building. The performance of the proposed control strategy is compared not only to the original structure but also to the cases of conventional and highly damped base isolation systems, as well as to the KDamper. The EKD presents an improved superstructure dynamic behavior, comparable with a base isolated system. At the same time, the base relative displacement is drastically reduced, in the order of a few centimeters, rendering the implementation of the EKD feasible using conventional structural elements, without the need for special types of bearings. In addition, the base shear is reduced, as compared to the original structure, with the implementation of the proposed configuration, and thus, EKD can be considered a possible retrofitting option for seismic protection. KDamper Seismic protection Negative stiffness Seismic base absorbers Seismic isolation Optimization Antoniadis, Ioannis A. verfasserin aut Sapountzakis, Evangelos J. verfasserin aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 226 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:226 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 226 |
allfields_unstemmed |
10.1016/j.engstruct.2020.111312 doi (DE-627)ELV005043689 (ELSEVIER)S0141-0296(20)33913-4 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Kapasakalis, Konstantinos A. verfasserin aut Constrained optimal design of seismic base absorbers based on an extended KDamper concept 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optimal system parameters. The EKD is designed according to seismic design codes and the constraints and limitations of the EKD components are evaluated based on engineering criteria. In order to better observe the efficiency of the proposed configuration, an acceleration filter is placed, as an additional constraint. Therefore, each set of optimized parameters of the EKD refers to the maximum structure acceleration, expressed as a percentage of PGA. A database of artificial accelerograms, compatible with the EC8 response spectra is generated. Sensitivity analysis is performed, and the effect of detuning is observed. Subsequently, the EKD is implemented as a seismic base absorber in a multi-story building. The performance of the proposed control strategy is compared not only to the original structure but also to the cases of conventional and highly damped base isolation systems, as well as to the KDamper. The EKD presents an improved superstructure dynamic behavior, comparable with a base isolated system. At the same time, the base relative displacement is drastically reduced, in the order of a few centimeters, rendering the implementation of the EKD feasible using conventional structural elements, without the need for special types of bearings. In addition, the base shear is reduced, as compared to the original structure, with the implementation of the proposed configuration, and thus, EKD can be considered a possible retrofitting option for seismic protection. KDamper Seismic protection Negative stiffness Seismic base absorbers Seismic isolation Optimization Antoniadis, Ioannis A. verfasserin aut Sapountzakis, Evangelos J. verfasserin aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 226 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:226 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 226 |
allfieldsGer |
10.1016/j.engstruct.2020.111312 doi (DE-627)ELV005043689 (ELSEVIER)S0141-0296(20)33913-4 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Kapasakalis, Konstantinos A. verfasserin aut Constrained optimal design of seismic base absorbers based on an extended KDamper concept 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optimal system parameters. The EKD is designed according to seismic design codes and the constraints and limitations of the EKD components are evaluated based on engineering criteria. In order to better observe the efficiency of the proposed configuration, an acceleration filter is placed, as an additional constraint. Therefore, each set of optimized parameters of the EKD refers to the maximum structure acceleration, expressed as a percentage of PGA. A database of artificial accelerograms, compatible with the EC8 response spectra is generated. Sensitivity analysis is performed, and the effect of detuning is observed. Subsequently, the EKD is implemented as a seismic base absorber in a multi-story building. The performance of the proposed control strategy is compared not only to the original structure but also to the cases of conventional and highly damped base isolation systems, as well as to the KDamper. The EKD presents an improved superstructure dynamic behavior, comparable with a base isolated system. At the same time, the base relative displacement is drastically reduced, in the order of a few centimeters, rendering the implementation of the EKD feasible using conventional structural elements, without the need for special types of bearings. In addition, the base shear is reduced, as compared to the original structure, with the implementation of the proposed configuration, and thus, EKD can be considered a possible retrofitting option for seismic protection. KDamper Seismic protection Negative stiffness Seismic base absorbers Seismic isolation Optimization Antoniadis, Ioannis A. verfasserin aut Sapountzakis, Evangelos J. verfasserin aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 226 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:226 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 226 |
allfieldsSound |
10.1016/j.engstruct.2020.111312 doi (DE-627)ELV005043689 (ELSEVIER)S0141-0296(20)33913-4 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Kapasakalis, Konstantinos A. verfasserin aut Constrained optimal design of seismic base absorbers based on an extended KDamper concept 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optimal system parameters. The EKD is designed according to seismic design codes and the constraints and limitations of the EKD components are evaluated based on engineering criteria. In order to better observe the efficiency of the proposed configuration, an acceleration filter is placed, as an additional constraint. Therefore, each set of optimized parameters of the EKD refers to the maximum structure acceleration, expressed as a percentage of PGA. A database of artificial accelerograms, compatible with the EC8 response spectra is generated. Sensitivity analysis is performed, and the effect of detuning is observed. Subsequently, the EKD is implemented as a seismic base absorber in a multi-story building. The performance of the proposed control strategy is compared not only to the original structure but also to the cases of conventional and highly damped base isolation systems, as well as to the KDamper. The EKD presents an improved superstructure dynamic behavior, comparable with a base isolated system. At the same time, the base relative displacement is drastically reduced, in the order of a few centimeters, rendering the implementation of the EKD feasible using conventional structural elements, without the need for special types of bearings. In addition, the base shear is reduced, as compared to the original structure, with the implementation of the proposed configuration, and thus, EKD can be considered a possible retrofitting option for seismic protection. KDamper Seismic protection Negative stiffness Seismic base absorbers Seismic isolation Optimization Antoniadis, Ioannis A. verfasserin aut Sapountzakis, Evangelos J. verfasserin aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 226 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:226 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 226 |
language |
English |
source |
Enthalten in Engineering structures 226 volume:226 |
sourceStr |
Enthalten in Engineering structures 226 volume:226 |
format_phy_str_mv |
Article |
bklname |
Seismologie Ingenieurgeologie Bodenmechanik Baukonstruktion |
institution |
findex.gbv.de |
topic_facet |
KDamper Seismic protection Negative stiffness Seismic base absorbers Seismic isolation Optimization |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Engineering structures |
authorswithroles_txt_mv |
Kapasakalis, Konstantinos A. @@aut@@ Antoniadis, Ioannis A. @@aut@@ Sapountzakis, Evangelos J. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320423344 |
dewey-sort |
3690 |
id |
ELV005043689 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005043689</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143341.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engstruct.2020.111312</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005043689</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-0296(20)33913-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kapasakalis, Konstantinos A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constrained optimal design of seismic base absorbers based on an extended KDamper concept</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optimal system parameters. The EKD is designed according to seismic design codes and the constraints and limitations of the EKD components are evaluated based on engineering criteria. In order to better observe the efficiency of the proposed configuration, an acceleration filter is placed, as an additional constraint. Therefore, each set of optimized parameters of the EKD refers to the maximum structure acceleration, expressed as a percentage of PGA. A database of artificial accelerograms, compatible with the EC8 response spectra is generated. Sensitivity analysis is performed, and the effect of detuning is observed. Subsequently, the EKD is implemented as a seismic base absorber in a multi-story building. The performance of the proposed control strategy is compared not only to the original structure but also to the cases of conventional and highly damped base isolation systems, as well as to the KDamper. The EKD presents an improved superstructure dynamic behavior, comparable with a base isolated system. At the same time, the base relative displacement is drastically reduced, in the order of a few centimeters, rendering the implementation of the EKD feasible using conventional structural elements, without the need for special types of bearings. In addition, the base shear is reduced, as compared to the original structure, with the implementation of the proposed configuration, and thus, EKD can be considered a possible retrofitting option for seismic protection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">KDamper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative stiffness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic base absorbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic isolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antoniadis, Ioannis A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sapountzakis, Evangelos J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">226</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423344</subfield><subfield code="w">(DE-600)2002833-7</subfield><subfield code="w">(DE-576)259271195</subfield><subfield code="x">0141-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.38</subfield><subfield code="j">Seismologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield></datafield></record></collection>
|
author |
Kapasakalis, Konstantinos A. |
spellingShingle |
Kapasakalis, Konstantinos A. ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc KDamper misc Seismic protection misc Negative stiffness misc Seismic base absorbers misc Seismic isolation misc Optimization Constrained optimal design of seismic base absorbers based on an extended KDamper concept |
authorStr |
Kapasakalis, Konstantinos A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320423344 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0141-0296 |
topic_title |
690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Constrained optimal design of seismic base absorbers based on an extended KDamper concept KDamper Seismic protection Negative stiffness Seismic base absorbers Seismic isolation Optimization |
topic |
ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc KDamper misc Seismic protection misc Negative stiffness misc Seismic base absorbers misc Seismic isolation misc Optimization |
topic_unstemmed |
ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc KDamper misc Seismic protection misc Negative stiffness misc Seismic base absorbers misc Seismic isolation misc Optimization |
topic_browse |
ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc KDamper misc Seismic protection misc Negative stiffness misc Seismic base absorbers misc Seismic isolation misc Optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering structures |
hierarchy_parent_id |
320423344 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Engineering structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 |
title |
Constrained optimal design of seismic base absorbers based on an extended KDamper concept |
ctrlnum |
(DE-627)ELV005043689 (ELSEVIER)S0141-0296(20)33913-4 |
title_full |
Constrained optimal design of seismic base absorbers based on an extended KDamper concept |
author_sort |
Kapasakalis, Konstantinos A. |
journal |
Engineering structures |
journalStr |
Engineering structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Kapasakalis, Konstantinos A. Antoniadis, Ioannis A. Sapountzakis, Evangelos J. |
container_volume |
226 |
class |
690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kapasakalis, Konstantinos A. |
doi_str_mv |
10.1016/j.engstruct.2020.111312 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
constrained optimal design of seismic base absorbers based on an extended kdamper concept |
title_auth |
Constrained optimal design of seismic base absorbers based on an extended KDamper concept |
abstract |
In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optimal system parameters. The EKD is designed according to seismic design codes and the constraints and limitations of the EKD components are evaluated based on engineering criteria. In order to better observe the efficiency of the proposed configuration, an acceleration filter is placed, as an additional constraint. Therefore, each set of optimized parameters of the EKD refers to the maximum structure acceleration, expressed as a percentage of PGA. A database of artificial accelerograms, compatible with the EC8 response spectra is generated. Sensitivity analysis is performed, and the effect of detuning is observed. Subsequently, the EKD is implemented as a seismic base absorber in a multi-story building. The performance of the proposed control strategy is compared not only to the original structure but also to the cases of conventional and highly damped base isolation systems, as well as to the KDamper. The EKD presents an improved superstructure dynamic behavior, comparable with a base isolated system. At the same time, the base relative displacement is drastically reduced, in the order of a few centimeters, rendering the implementation of the EKD feasible using conventional structural elements, without the need for special types of bearings. In addition, the base shear is reduced, as compared to the original structure, with the implementation of the proposed configuration, and thus, EKD can be considered a possible retrofitting option for seismic protection. |
abstractGer |
In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optimal system parameters. The EKD is designed according to seismic design codes and the constraints and limitations of the EKD components are evaluated based on engineering criteria. In order to better observe the efficiency of the proposed configuration, an acceleration filter is placed, as an additional constraint. Therefore, each set of optimized parameters of the EKD refers to the maximum structure acceleration, expressed as a percentage of PGA. A database of artificial accelerograms, compatible with the EC8 response spectra is generated. Sensitivity analysis is performed, and the effect of detuning is observed. Subsequently, the EKD is implemented as a seismic base absorber in a multi-story building. The performance of the proposed control strategy is compared not only to the original structure but also to the cases of conventional and highly damped base isolation systems, as well as to the KDamper. The EKD presents an improved superstructure dynamic behavior, comparable with a base isolated system. At the same time, the base relative displacement is drastically reduced, in the order of a few centimeters, rendering the implementation of the EKD feasible using conventional structural elements, without the need for special types of bearings. In addition, the base shear is reduced, as compared to the original structure, with the implementation of the proposed configuration, and thus, EKD can be considered a possible retrofitting option for seismic protection. |
abstract_unstemmed |
In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optimal system parameters. The EKD is designed according to seismic design codes and the constraints and limitations of the EKD components are evaluated based on engineering criteria. In order to better observe the efficiency of the proposed configuration, an acceleration filter is placed, as an additional constraint. Therefore, each set of optimized parameters of the EKD refers to the maximum structure acceleration, expressed as a percentage of PGA. A database of artificial accelerograms, compatible with the EC8 response spectra is generated. Sensitivity analysis is performed, and the effect of detuning is observed. Subsequently, the EKD is implemented as a seismic base absorber in a multi-story building. The performance of the proposed control strategy is compared not only to the original structure but also to the cases of conventional and highly damped base isolation systems, as well as to the KDamper. The EKD presents an improved superstructure dynamic behavior, comparable with a base isolated system. At the same time, the base relative displacement is drastically reduced, in the order of a few centimeters, rendering the implementation of the EKD feasible using conventional structural elements, without the need for special types of bearings. In addition, the base shear is reduced, as compared to the original structure, with the implementation of the proposed configuration, and thus, EKD can be considered a possible retrofitting option for seismic protection. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Constrained optimal design of seismic base absorbers based on an extended KDamper concept |
remote_bool |
true |
author2 |
Antoniadis, Ioannis A. Sapountzakis, Evangelos J. |
author2Str |
Antoniadis, Ioannis A. Sapountzakis, Evangelos J. |
ppnlink |
320423344 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.engstruct.2020.111312 |
up_date |
2024-07-06T16:37:43.595Z |
_version_ |
1803848372559282176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005043689</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143341.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engstruct.2020.111312</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005043689</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-0296(20)33913-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kapasakalis, Konstantinos A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constrained optimal design of seismic base absorbers based on an extended KDamper concept</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, an extended KDamper (EKD) concept is proposed, for implementation as a seismic base absorber. The complexity of the EKD renders the conventional minmax (H∞) approaches ineffective. For this reason, a dedicated constrained optimization problem is proposed for the selection of the optimal system parameters. The EKD is designed according to seismic design codes and the constraints and limitations of the EKD components are evaluated based on engineering criteria. In order to better observe the efficiency of the proposed configuration, an acceleration filter is placed, as an additional constraint. Therefore, each set of optimized parameters of the EKD refers to the maximum structure acceleration, expressed as a percentage of PGA. A database of artificial accelerograms, compatible with the EC8 response spectra is generated. Sensitivity analysis is performed, and the effect of detuning is observed. Subsequently, the EKD is implemented as a seismic base absorber in a multi-story building. The performance of the proposed control strategy is compared not only to the original structure but also to the cases of conventional and highly damped base isolation systems, as well as to the KDamper. The EKD presents an improved superstructure dynamic behavior, comparable with a base isolated system. At the same time, the base relative displacement is drastically reduced, in the order of a few centimeters, rendering the implementation of the EKD feasible using conventional structural elements, without the need for special types of bearings. In addition, the base shear is reduced, as compared to the original structure, with the implementation of the proposed configuration, and thus, EKD can be considered a possible retrofitting option for seismic protection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">KDamper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative stiffness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic base absorbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismic isolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antoniadis, Ioannis A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sapountzakis, Evangelos J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">226</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423344</subfield><subfield code="w">(DE-600)2002833-7</subfield><subfield code="w">(DE-576)259271195</subfield><subfield code="x">0141-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.38</subfield><subfield code="j">Seismologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield></datafield></record></collection>
|
score |
7.401575 |