Joint representation learning for multi-view subspace clustering
Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or...
Ausführliche Beschreibung
Autor*in: |
Zhang, Guang-Yu [verfasserIn] Zhou, Yu-Ren [verfasserIn] Wang, Chang-Dong [verfasserIn] Huang, Dong [verfasserIn] He, Xiao-Yu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
Multi-view subspace clustering View-specific representation learning |
---|
Übergeordnetes Werk: |
Enthalten in: Expert systems with applications - Amsterdam [u.a.] : Elsevier Science, 1990, 166 |
---|---|
Übergeordnetes Werk: |
volume:166 |
DOI / URN: |
10.1016/j.eswa.2020.113913 |
---|
Katalog-ID: |
ELV005159008 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005159008 | ||
003 | DE-627 | ||
005 | 20230524153658.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230503s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eswa.2020.113913 |2 doi | |
035 | |a (DE-627)ELV005159008 | ||
035 | |a (ELSEVIER)S0957-4174(20)30707-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Zhang, Guang-Yu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Joint representation learning for multi-view subspace clustering |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts. | ||
650 | 4 | |a Multi-view subspace clustering | |
650 | 4 | |a View-specific representation learning | |
650 | 4 | |a Low-rank tensor representation learning | |
650 | 4 | |a Unified framework | |
700 | 1 | |a Zhou, Yu-Ren |e verfasserin |4 aut | |
700 | 1 | |a Wang, Chang-Dong |e verfasserin |4 aut | |
700 | 1 | |a Huang, Dong |e verfasserin |4 aut | |
700 | 1 | |a He, Xiao-Yu |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Expert systems with applications |d Amsterdam [u.a.] : Elsevier Science, 1990 |g 166 |h Online-Ressource |w (DE-627)320577961 |w (DE-600)2017237-0 |w (DE-576)11481807X |7 nnns |
773 | 1 | 8 | |g volume:166 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |
951 | |a AR | ||
952 | |d 166 |
author_variant |
g y z gyz y r z yrz c d w cdw d h dh x y h xyh |
---|---|
matchkey_str |
zhangguangyuzhouyurenwangchangdonghuangd:2020----:onrpeettolannfrutvesb |
hierarchy_sort_str |
2020 |
bklnumber |
54.72 |
publishDate |
2020 |
allfields |
10.1016/j.eswa.2020.113913 doi (DE-627)ELV005159008 (ELSEVIER)S0957-4174(20)30707-7 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Zhang, Guang-Yu verfasserin aut Joint representation learning for multi-view subspace clustering 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts. Multi-view subspace clustering View-specific representation learning Low-rank tensor representation learning Unified framework Zhou, Yu-Ren verfasserin aut Wang, Chang-Dong verfasserin aut Huang, Dong verfasserin aut He, Xiao-Yu verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 166 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:166 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 166 |
spelling |
10.1016/j.eswa.2020.113913 doi (DE-627)ELV005159008 (ELSEVIER)S0957-4174(20)30707-7 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Zhang, Guang-Yu verfasserin aut Joint representation learning for multi-view subspace clustering 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts. Multi-view subspace clustering View-specific representation learning Low-rank tensor representation learning Unified framework Zhou, Yu-Ren verfasserin aut Wang, Chang-Dong verfasserin aut Huang, Dong verfasserin aut He, Xiao-Yu verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 166 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:166 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 166 |
allfields_unstemmed |
10.1016/j.eswa.2020.113913 doi (DE-627)ELV005159008 (ELSEVIER)S0957-4174(20)30707-7 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Zhang, Guang-Yu verfasserin aut Joint representation learning for multi-view subspace clustering 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts. Multi-view subspace clustering View-specific representation learning Low-rank tensor representation learning Unified framework Zhou, Yu-Ren verfasserin aut Wang, Chang-Dong verfasserin aut Huang, Dong verfasserin aut He, Xiao-Yu verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 166 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:166 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 166 |
allfieldsGer |
10.1016/j.eswa.2020.113913 doi (DE-627)ELV005159008 (ELSEVIER)S0957-4174(20)30707-7 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Zhang, Guang-Yu verfasserin aut Joint representation learning for multi-view subspace clustering 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts. Multi-view subspace clustering View-specific representation learning Low-rank tensor representation learning Unified framework Zhou, Yu-Ren verfasserin aut Wang, Chang-Dong verfasserin aut Huang, Dong verfasserin aut He, Xiao-Yu verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 166 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:166 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 166 |
allfieldsSound |
10.1016/j.eswa.2020.113913 doi (DE-627)ELV005159008 (ELSEVIER)S0957-4174(20)30707-7 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Zhang, Guang-Yu verfasserin aut Joint representation learning for multi-view subspace clustering 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts. Multi-view subspace clustering View-specific representation learning Low-rank tensor representation learning Unified framework Zhou, Yu-Ren verfasserin aut Wang, Chang-Dong verfasserin aut Huang, Dong verfasserin aut He, Xiao-Yu verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 166 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:166 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 166 |
language |
English |
source |
Enthalten in Expert systems with applications 166 volume:166 |
sourceStr |
Enthalten in Expert systems with applications 166 volume:166 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Multi-view subspace clustering View-specific representation learning Low-rank tensor representation learning Unified framework |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Expert systems with applications |
authorswithroles_txt_mv |
Zhang, Guang-Yu @@aut@@ Zhou, Yu-Ren @@aut@@ Wang, Chang-Dong @@aut@@ Huang, Dong @@aut@@ He, Xiao-Yu @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320577961 |
dewey-sort |
14 |
id |
ELV005159008 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005159008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524153658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2020.113913</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005159008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(20)30707-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Guang-Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Joint representation learning for multi-view subspace clustering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-view subspace clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">View-specific representation learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-rank tensor representation learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unified framework</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Yu-Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chang-Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Xiao-Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Expert systems with applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">166</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320577961</subfield><subfield code="w">(DE-600)2017237-0</subfield><subfield code="w">(DE-576)11481807X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:166</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">166</subfield></datafield></record></collection>
|
author |
Zhang, Guang-Yu |
spellingShingle |
Zhang, Guang-Yu ddc 004 bkl 54.72 misc Multi-view subspace clustering misc View-specific representation learning misc Low-rank tensor representation learning misc Unified framework Joint representation learning for multi-view subspace clustering |
authorStr |
Zhang, Guang-Yu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320577961 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 DE-600 54.72 bkl Joint representation learning for multi-view subspace clustering Multi-view subspace clustering View-specific representation learning Low-rank tensor representation learning Unified framework |
topic |
ddc 004 bkl 54.72 misc Multi-view subspace clustering misc View-specific representation learning misc Low-rank tensor representation learning misc Unified framework |
topic_unstemmed |
ddc 004 bkl 54.72 misc Multi-view subspace clustering misc View-specific representation learning misc Low-rank tensor representation learning misc Unified framework |
topic_browse |
ddc 004 bkl 54.72 misc Multi-view subspace clustering misc View-specific representation learning misc Low-rank tensor representation learning misc Unified framework |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Expert systems with applications |
hierarchy_parent_id |
320577961 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Expert systems with applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X |
title |
Joint representation learning for multi-view subspace clustering |
ctrlnum |
(DE-627)ELV005159008 (ELSEVIER)S0957-4174(20)30707-7 |
title_full |
Joint representation learning for multi-view subspace clustering |
author_sort |
Zhang, Guang-Yu |
journal |
Expert systems with applications |
journalStr |
Expert systems with applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Guang-Yu Zhou, Yu-Ren Wang, Chang-Dong Huang, Dong He, Xiao-Yu |
container_volume |
166 |
class |
004 DE-600 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Guang-Yu |
doi_str_mv |
10.1016/j.eswa.2020.113913 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
joint representation learning for multi-view subspace clustering |
title_auth |
Joint representation learning for multi-view subspace clustering |
abstract |
Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts. |
abstractGer |
Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts. |
abstract_unstemmed |
Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Joint representation learning for multi-view subspace clustering |
remote_bool |
true |
author2 |
Zhou, Yu-Ren Wang, Chang-Dong Huang, Dong He, Xiao-Yu |
author2Str |
Zhou, Yu-Ren Wang, Chang-Dong Huang, Dong He, Xiao-Yu |
ppnlink |
320577961 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.eswa.2020.113913 |
up_date |
2024-07-06T17:00:50.933Z |
_version_ |
1803849827286515712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005159008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524153658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2020.113913</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005159008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(20)30707-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Guang-Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Joint representation learning for multi-view subspace clustering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-view subspace clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">View-specific representation learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-rank tensor representation learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unified framework</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Yu-Ren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chang-Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Xiao-Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Expert systems with applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">166</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320577961</subfield><subfield code="w">(DE-600)2017237-0</subfield><subfield code="w">(DE-576)11481807X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:166</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">166</subfield></datafield></record></collection>
|
score |
7.400776 |