Social mining for terroristic behavior detection through Arabic tweets characterization
In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every co...
Ausführliche Beschreibung
Autor*in: |
Alhalabi, Wadee [verfasserIn] Jussila, Jari [verfasserIn] Jambi, Kamal [verfasserIn] Visvizi, Anna [verfasserIn] Qureshi, Hafsa [verfasserIn] Lytras, Miltiadis [verfasserIn] Malibari, Areej [verfasserIn] Adham, Raniah Samir [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Future generation computer systems - Amsterdam [u.a.] : Elsevier Science, 1984, 116, Seite 132-144 |
---|---|
Übergeordnetes Werk: |
volume:116 ; pages:132-144 |
DOI / URN: |
10.1016/j.future.2020.10.027 |
---|
Katalog-ID: |
ELV005193125 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005193125 | ||
003 | DE-627 | ||
005 | 20230524160024.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230503s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.future.2020.10.027 |2 doi | |
035 | |a (DE-627)ELV005193125 | ||
035 | |a (ELSEVIER)S0167-739X(20)33004-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Alhalabi, Wadee |e verfasserin |4 aut | |
245 | 1 | 0 | |a Social mining for terroristic behavior detection through Arabic tweets characterization |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every country, but has complexities in both the supervision of shared content and in the understanding of behavior. Therefore, in this project an artificial intelligence enabled Detection Terrorist behavior system (ALT-TERROS) as a key priority was developed. The key requirements for a terrorist behavior detection system operating in the Kingdom are: (i) Data integration, (ii) Advanced smart analysis capacity and (iii) Decision making capability. The unique value proposition is based on a sophisticated integrated approach to the management of distributed data available on social media, which uses advanced social mining methods for the detection of patterns of terrorist behavior, its visualization and use for decision making. In addition, several critical issues related to the availability of APIs to handle Arabic text as well as the need to provide an end-to-end workflow from the extraction of textual and visual data over social media to the deliverable of advanced analytics and visualizations for rating mechanisms were highlighted. The key contribution of our approach is a testbed for the application of novel scientific approaches and algorithms for the rating of harm associated to social media content. The complexity of the problem does not allow hyper-optimistic solutions, but the combination of heuristic rules and advanced decision-making capabilities is toward the right direction. We contribute to the body of the theory of Sentiment Analysis for Arabic content and we also summarize a heuristic algorithm developed for the future. In the future research directions, we emphasize on the need to develop trusted Arabic thesaurus and corpus for the use sentiment analysis. | ||
650 | 4 | |a Sentiment antiterrorism detection | |
650 | 4 | |a Social mining | |
650 | 4 | |a Twitter | |
650 | 4 | |a Arabic tweets | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Sentiment analysis | |
700 | 1 | |a Jussila, Jari |e verfasserin |4 aut | |
700 | 1 | |a Jambi, Kamal |e verfasserin |4 aut | |
700 | 1 | |a Visvizi, Anna |e verfasserin |4 aut | |
700 | 1 | |a Qureshi, Hafsa |e verfasserin |4 aut | |
700 | 1 | |a Lytras, Miltiadis |e verfasserin |4 aut | |
700 | 1 | |a Malibari, Areej |e verfasserin |4 aut | |
700 | 1 | |a Adham, Raniah Samir |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Future generation computer systems |d Amsterdam [u.a.] : Elsevier Science, 1984 |g 116, Seite 132-144 |h Online-Ressource |w (DE-627)320604284 |w (DE-600)2020551-X |w (DE-576)094399212 |x 0167-739X |7 nnns |
773 | 1 | 8 | |g volume:116 |g pages:132-144 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.00 |j Informatik: Allgemeines |
951 | |a AR | ||
952 | |d 116 |h 132-144 |
author_variant |
w a wa j j jj k j kj a v av h q hq m l ml a m am r s a rs rsa |
---|---|
matchkey_str |
article:0167739X:2020----::oiliigotroitceaireetotruhrbc |
hierarchy_sort_str |
2020 |
bklnumber |
54.00 |
publishDate |
2020 |
allfields |
10.1016/j.future.2020.10.027 doi (DE-627)ELV005193125 (ELSEVIER)S0167-739X(20)33004-1 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Alhalabi, Wadee verfasserin aut Social mining for terroristic behavior detection through Arabic tweets characterization 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every country, but has complexities in both the supervision of shared content and in the understanding of behavior. Therefore, in this project an artificial intelligence enabled Detection Terrorist behavior system (ALT-TERROS) as a key priority was developed. The key requirements for a terrorist behavior detection system operating in the Kingdom are: (i) Data integration, (ii) Advanced smart analysis capacity and (iii) Decision making capability. The unique value proposition is based on a sophisticated integrated approach to the management of distributed data available on social media, which uses advanced social mining methods for the detection of patterns of terrorist behavior, its visualization and use for decision making. In addition, several critical issues related to the availability of APIs to handle Arabic text as well as the need to provide an end-to-end workflow from the extraction of textual and visual data over social media to the deliverable of advanced analytics and visualizations for rating mechanisms were highlighted. The key contribution of our approach is a testbed for the application of novel scientific approaches and algorithms for the rating of harm associated to social media content. The complexity of the problem does not allow hyper-optimistic solutions, but the combination of heuristic rules and advanced decision-making capabilities is toward the right direction. We contribute to the body of the theory of Sentiment Analysis for Arabic content and we also summarize a heuristic algorithm developed for the future. In the future research directions, we emphasize on the need to develop trusted Arabic thesaurus and corpus for the use sentiment analysis. Sentiment antiterrorism detection Social mining Twitter Arabic tweets Algorithms Sentiment analysis Jussila, Jari verfasserin aut Jambi, Kamal verfasserin aut Visvizi, Anna verfasserin aut Qureshi, Hafsa verfasserin aut Lytras, Miltiadis verfasserin aut Malibari, Areej verfasserin aut Adham, Raniah Samir verfasserin aut Enthalten in Future generation computer systems Amsterdam [u.a.] : Elsevier Science, 1984 116, Seite 132-144 Online-Ressource (DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 0167-739X nnns volume:116 pages:132-144 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 116 132-144 |
spelling |
10.1016/j.future.2020.10.027 doi (DE-627)ELV005193125 (ELSEVIER)S0167-739X(20)33004-1 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Alhalabi, Wadee verfasserin aut Social mining for terroristic behavior detection through Arabic tweets characterization 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every country, but has complexities in both the supervision of shared content and in the understanding of behavior. Therefore, in this project an artificial intelligence enabled Detection Terrorist behavior system (ALT-TERROS) as a key priority was developed. The key requirements for a terrorist behavior detection system operating in the Kingdom are: (i) Data integration, (ii) Advanced smart analysis capacity and (iii) Decision making capability. The unique value proposition is based on a sophisticated integrated approach to the management of distributed data available on social media, which uses advanced social mining methods for the detection of patterns of terrorist behavior, its visualization and use for decision making. In addition, several critical issues related to the availability of APIs to handle Arabic text as well as the need to provide an end-to-end workflow from the extraction of textual and visual data over social media to the deliverable of advanced analytics and visualizations for rating mechanisms were highlighted. The key contribution of our approach is a testbed for the application of novel scientific approaches and algorithms for the rating of harm associated to social media content. The complexity of the problem does not allow hyper-optimistic solutions, but the combination of heuristic rules and advanced decision-making capabilities is toward the right direction. We contribute to the body of the theory of Sentiment Analysis for Arabic content and we also summarize a heuristic algorithm developed for the future. In the future research directions, we emphasize on the need to develop trusted Arabic thesaurus and corpus for the use sentiment analysis. Sentiment antiterrorism detection Social mining Twitter Arabic tweets Algorithms Sentiment analysis Jussila, Jari verfasserin aut Jambi, Kamal verfasserin aut Visvizi, Anna verfasserin aut Qureshi, Hafsa verfasserin aut Lytras, Miltiadis verfasserin aut Malibari, Areej verfasserin aut Adham, Raniah Samir verfasserin aut Enthalten in Future generation computer systems Amsterdam [u.a.] : Elsevier Science, 1984 116, Seite 132-144 Online-Ressource (DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 0167-739X nnns volume:116 pages:132-144 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 116 132-144 |
allfields_unstemmed |
10.1016/j.future.2020.10.027 doi (DE-627)ELV005193125 (ELSEVIER)S0167-739X(20)33004-1 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Alhalabi, Wadee verfasserin aut Social mining for terroristic behavior detection through Arabic tweets characterization 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every country, but has complexities in both the supervision of shared content and in the understanding of behavior. Therefore, in this project an artificial intelligence enabled Detection Terrorist behavior system (ALT-TERROS) as a key priority was developed. The key requirements for a terrorist behavior detection system operating in the Kingdom are: (i) Data integration, (ii) Advanced smart analysis capacity and (iii) Decision making capability. The unique value proposition is based on a sophisticated integrated approach to the management of distributed data available on social media, which uses advanced social mining methods for the detection of patterns of terrorist behavior, its visualization and use for decision making. In addition, several critical issues related to the availability of APIs to handle Arabic text as well as the need to provide an end-to-end workflow from the extraction of textual and visual data over social media to the deliverable of advanced analytics and visualizations for rating mechanisms were highlighted. The key contribution of our approach is a testbed for the application of novel scientific approaches and algorithms for the rating of harm associated to social media content. The complexity of the problem does not allow hyper-optimistic solutions, but the combination of heuristic rules and advanced decision-making capabilities is toward the right direction. We contribute to the body of the theory of Sentiment Analysis for Arabic content and we also summarize a heuristic algorithm developed for the future. In the future research directions, we emphasize on the need to develop trusted Arabic thesaurus and corpus for the use sentiment analysis. Sentiment antiterrorism detection Social mining Twitter Arabic tweets Algorithms Sentiment analysis Jussila, Jari verfasserin aut Jambi, Kamal verfasserin aut Visvizi, Anna verfasserin aut Qureshi, Hafsa verfasserin aut Lytras, Miltiadis verfasserin aut Malibari, Areej verfasserin aut Adham, Raniah Samir verfasserin aut Enthalten in Future generation computer systems Amsterdam [u.a.] : Elsevier Science, 1984 116, Seite 132-144 Online-Ressource (DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 0167-739X nnns volume:116 pages:132-144 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 116 132-144 |
allfieldsGer |
10.1016/j.future.2020.10.027 doi (DE-627)ELV005193125 (ELSEVIER)S0167-739X(20)33004-1 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Alhalabi, Wadee verfasserin aut Social mining for terroristic behavior detection through Arabic tweets characterization 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every country, but has complexities in both the supervision of shared content and in the understanding of behavior. Therefore, in this project an artificial intelligence enabled Detection Terrorist behavior system (ALT-TERROS) as a key priority was developed. The key requirements for a terrorist behavior detection system operating in the Kingdom are: (i) Data integration, (ii) Advanced smart analysis capacity and (iii) Decision making capability. The unique value proposition is based on a sophisticated integrated approach to the management of distributed data available on social media, which uses advanced social mining methods for the detection of patterns of terrorist behavior, its visualization and use for decision making. In addition, several critical issues related to the availability of APIs to handle Arabic text as well as the need to provide an end-to-end workflow from the extraction of textual and visual data over social media to the deliverable of advanced analytics and visualizations for rating mechanisms were highlighted. The key contribution of our approach is a testbed for the application of novel scientific approaches and algorithms for the rating of harm associated to social media content. The complexity of the problem does not allow hyper-optimistic solutions, but the combination of heuristic rules and advanced decision-making capabilities is toward the right direction. We contribute to the body of the theory of Sentiment Analysis for Arabic content and we also summarize a heuristic algorithm developed for the future. In the future research directions, we emphasize on the need to develop trusted Arabic thesaurus and corpus for the use sentiment analysis. Sentiment antiterrorism detection Social mining Twitter Arabic tweets Algorithms Sentiment analysis Jussila, Jari verfasserin aut Jambi, Kamal verfasserin aut Visvizi, Anna verfasserin aut Qureshi, Hafsa verfasserin aut Lytras, Miltiadis verfasserin aut Malibari, Areej verfasserin aut Adham, Raniah Samir verfasserin aut Enthalten in Future generation computer systems Amsterdam [u.a.] : Elsevier Science, 1984 116, Seite 132-144 Online-Ressource (DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 0167-739X nnns volume:116 pages:132-144 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 116 132-144 |
allfieldsSound |
10.1016/j.future.2020.10.027 doi (DE-627)ELV005193125 (ELSEVIER)S0167-739X(20)33004-1 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Alhalabi, Wadee verfasserin aut Social mining for terroristic behavior detection through Arabic tweets characterization 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every country, but has complexities in both the supervision of shared content and in the understanding of behavior. Therefore, in this project an artificial intelligence enabled Detection Terrorist behavior system (ALT-TERROS) as a key priority was developed. The key requirements for a terrorist behavior detection system operating in the Kingdom are: (i) Data integration, (ii) Advanced smart analysis capacity and (iii) Decision making capability. The unique value proposition is based on a sophisticated integrated approach to the management of distributed data available on social media, which uses advanced social mining methods for the detection of patterns of terrorist behavior, its visualization and use for decision making. In addition, several critical issues related to the availability of APIs to handle Arabic text as well as the need to provide an end-to-end workflow from the extraction of textual and visual data over social media to the deliverable of advanced analytics and visualizations for rating mechanisms were highlighted. The key contribution of our approach is a testbed for the application of novel scientific approaches and algorithms for the rating of harm associated to social media content. The complexity of the problem does not allow hyper-optimistic solutions, but the combination of heuristic rules and advanced decision-making capabilities is toward the right direction. We contribute to the body of the theory of Sentiment Analysis for Arabic content and we also summarize a heuristic algorithm developed for the future. In the future research directions, we emphasize on the need to develop trusted Arabic thesaurus and corpus for the use sentiment analysis. Sentiment antiterrorism detection Social mining Twitter Arabic tweets Algorithms Sentiment analysis Jussila, Jari verfasserin aut Jambi, Kamal verfasserin aut Visvizi, Anna verfasserin aut Qureshi, Hafsa verfasserin aut Lytras, Miltiadis verfasserin aut Malibari, Areej verfasserin aut Adham, Raniah Samir verfasserin aut Enthalten in Future generation computer systems Amsterdam [u.a.] : Elsevier Science, 1984 116, Seite 132-144 Online-Ressource (DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 0167-739X nnns volume:116 pages:132-144 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 116 132-144 |
language |
English |
source |
Enthalten in Future generation computer systems 116, Seite 132-144 volume:116 pages:132-144 |
sourceStr |
Enthalten in Future generation computer systems 116, Seite 132-144 volume:116 pages:132-144 |
format_phy_str_mv |
Article |
bklname |
Informatik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Sentiment antiterrorism detection Social mining Arabic tweets Algorithms Sentiment analysis |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Future generation computer systems |
authorswithroles_txt_mv |
Alhalabi, Wadee @@aut@@ Jussila, Jari @@aut@@ Jambi, Kamal @@aut@@ Visvizi, Anna @@aut@@ Qureshi, Hafsa @@aut@@ Lytras, Miltiadis @@aut@@ Malibari, Areej @@aut@@ Adham, Raniah Samir @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320604284 |
dewey-sort |
14 |
id |
ELV005193125 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005193125</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160024.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.future.2020.10.027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005193125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-739X(20)33004-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alhalabi, Wadee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Social mining for terroristic behavior detection through Arabic tweets characterization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every country, but has complexities in both the supervision of shared content and in the understanding of behavior. Therefore, in this project an artificial intelligence enabled Detection Terrorist behavior system (ALT-TERROS) as a key priority was developed. The key requirements for a terrorist behavior detection system operating in the Kingdom are: (i) Data integration, (ii) Advanced smart analysis capacity and (iii) Decision making capability. The unique value proposition is based on a sophisticated integrated approach to the management of distributed data available on social media, which uses advanced social mining methods for the detection of patterns of terrorist behavior, its visualization and use for decision making. In addition, several critical issues related to the availability of APIs to handle Arabic text as well as the need to provide an end-to-end workflow from the extraction of textual and visual data over social media to the deliverable of advanced analytics and visualizations for rating mechanisms were highlighted. The key contribution of our approach is a testbed for the application of novel scientific approaches and algorithms for the rating of harm associated to social media content. The complexity of the problem does not allow hyper-optimistic solutions, but the combination of heuristic rules and advanced decision-making capabilities is toward the right direction. We contribute to the body of the theory of Sentiment Analysis for Arabic content and we also summarize a heuristic algorithm developed for the future. In the future research directions, we emphasize on the need to develop trusted Arabic thesaurus and corpus for the use sentiment analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment antiterrorism detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Twitter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabic tweets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jussila, Jari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jambi, Kamal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Visvizi, Anna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qureshi, Hafsa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lytras, Miltiadis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malibari, Areej</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adham, Raniah Samir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Future generation computer systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1984</subfield><subfield code="g">116, Seite 132-144</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604284</subfield><subfield code="w">(DE-600)2020551-X</subfield><subfield code="w">(DE-576)094399212</subfield><subfield code="x">0167-739X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield><subfield code="g">pages:132-144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield><subfield code="h">132-144</subfield></datafield></record></collection>
|
author |
Alhalabi, Wadee |
spellingShingle |
Alhalabi, Wadee ddc 004 bkl 54.00 misc Sentiment antiterrorism detection misc Social mining misc Twitter misc Arabic tweets misc Algorithms misc Sentiment analysis Social mining for terroristic behavior detection through Arabic tweets characterization |
authorStr |
Alhalabi, Wadee |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320604284 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0167-739X |
topic_title |
004 DE-600 54.00 bkl Social mining for terroristic behavior detection through Arabic tweets characterization Sentiment antiterrorism detection Social mining Arabic tweets Algorithms Sentiment analysis |
topic |
ddc 004 bkl 54.00 misc Sentiment antiterrorism detection misc Social mining misc Twitter misc Arabic tweets misc Algorithms misc Sentiment analysis |
topic_unstemmed |
ddc 004 bkl 54.00 misc Sentiment antiterrorism detection misc Social mining misc Twitter misc Arabic tweets misc Algorithms misc Sentiment analysis |
topic_browse |
ddc 004 bkl 54.00 misc Sentiment antiterrorism detection misc Social mining misc Twitter misc Arabic tweets misc Algorithms misc Sentiment analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Future generation computer systems |
hierarchy_parent_id |
320604284 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Future generation computer systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 |
title |
Social mining for terroristic behavior detection through Arabic tweets characterization |
ctrlnum |
(DE-627)ELV005193125 (ELSEVIER)S0167-739X(20)33004-1 |
title_full |
Social mining for terroristic behavior detection through Arabic tweets characterization |
author_sort |
Alhalabi, Wadee |
journal |
Future generation computer systems |
journalStr |
Future generation computer systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
132 |
author_browse |
Alhalabi, Wadee Jussila, Jari Jambi, Kamal Visvizi, Anna Qureshi, Hafsa Lytras, Miltiadis Malibari, Areej Adham, Raniah Samir |
container_volume |
116 |
class |
004 DE-600 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Alhalabi, Wadee |
doi_str_mv |
10.1016/j.future.2020.10.027 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
social mining for terroristic behavior detection through arabic tweets characterization |
title_auth |
Social mining for terroristic behavior detection through Arabic tweets characterization |
abstract |
In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every country, but has complexities in both the supervision of shared content and in the understanding of behavior. Therefore, in this project an artificial intelligence enabled Detection Terrorist behavior system (ALT-TERROS) as a key priority was developed. The key requirements for a terrorist behavior detection system operating in the Kingdom are: (i) Data integration, (ii) Advanced smart analysis capacity and (iii) Decision making capability. The unique value proposition is based on a sophisticated integrated approach to the management of distributed data available on social media, which uses advanced social mining methods for the detection of patterns of terrorist behavior, its visualization and use for decision making. In addition, several critical issues related to the availability of APIs to handle Arabic text as well as the need to provide an end-to-end workflow from the extraction of textual and visual data over social media to the deliverable of advanced analytics and visualizations for rating mechanisms were highlighted. The key contribution of our approach is a testbed for the application of novel scientific approaches and algorithms for the rating of harm associated to social media content. The complexity of the problem does not allow hyper-optimistic solutions, but the combination of heuristic rules and advanced decision-making capabilities is toward the right direction. We contribute to the body of the theory of Sentiment Analysis for Arabic content and we also summarize a heuristic algorithm developed for the future. In the future research directions, we emphasize on the need to develop trusted Arabic thesaurus and corpus for the use sentiment analysis. |
abstractGer |
In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every country, but has complexities in both the supervision of shared content and in the understanding of behavior. Therefore, in this project an artificial intelligence enabled Detection Terrorist behavior system (ALT-TERROS) as a key priority was developed. The key requirements for a terrorist behavior detection system operating in the Kingdom are: (i) Data integration, (ii) Advanced smart analysis capacity and (iii) Decision making capability. The unique value proposition is based on a sophisticated integrated approach to the management of distributed data available on social media, which uses advanced social mining methods for the detection of patterns of terrorist behavior, its visualization and use for decision making. In addition, several critical issues related to the availability of APIs to handle Arabic text as well as the need to provide an end-to-end workflow from the extraction of textual and visual data over social media to the deliverable of advanced analytics and visualizations for rating mechanisms were highlighted. The key contribution of our approach is a testbed for the application of novel scientific approaches and algorithms for the rating of harm associated to social media content. The complexity of the problem does not allow hyper-optimistic solutions, but the combination of heuristic rules and advanced decision-making capabilities is toward the right direction. We contribute to the body of the theory of Sentiment Analysis for Arabic content and we also summarize a heuristic algorithm developed for the future. In the future research directions, we emphasize on the need to develop trusted Arabic thesaurus and corpus for the use sentiment analysis. |
abstract_unstemmed |
In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every country, but has complexities in both the supervision of shared content and in the understanding of behavior. Therefore, in this project an artificial intelligence enabled Detection Terrorist behavior system (ALT-TERROS) as a key priority was developed. The key requirements for a terrorist behavior detection system operating in the Kingdom are: (i) Data integration, (ii) Advanced smart analysis capacity and (iii) Decision making capability. The unique value proposition is based on a sophisticated integrated approach to the management of distributed data available on social media, which uses advanced social mining methods for the detection of patterns of terrorist behavior, its visualization and use for decision making. In addition, several critical issues related to the availability of APIs to handle Arabic text as well as the need to provide an end-to-end workflow from the extraction of textual and visual data over social media to the deliverable of advanced analytics and visualizations for rating mechanisms were highlighted. The key contribution of our approach is a testbed for the application of novel scientific approaches and algorithms for the rating of harm associated to social media content. The complexity of the problem does not allow hyper-optimistic solutions, but the combination of heuristic rules and advanced decision-making capabilities is toward the right direction. We contribute to the body of the theory of Sentiment Analysis for Arabic content and we also summarize a heuristic algorithm developed for the future. In the future research directions, we emphasize on the need to develop trusted Arabic thesaurus and corpus for the use sentiment analysis. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Social mining for terroristic behavior detection through Arabic tweets characterization |
remote_bool |
true |
author2 |
Jussila, Jari Jambi, Kamal Visvizi, Anna Qureshi, Hafsa Lytras, Miltiadis Malibari, Areej Adham, Raniah Samir |
author2Str |
Jussila, Jari Jambi, Kamal Visvizi, Anna Qureshi, Hafsa Lytras, Miltiadis Malibari, Areej Adham, Raniah Samir |
ppnlink |
320604284 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.future.2020.10.027 |
up_date |
2024-07-06T17:07:52.803Z |
_version_ |
1803850269648224256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005193125</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160024.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.future.2020.10.027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005193125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-739X(20)33004-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alhalabi, Wadee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Social mining for terroristic behavior detection through Arabic tweets characterization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the latest years, the use of social media has increased dramatically. Content, as well as media, are shared in Big Data volumes and this poses a critical requirement for the behavior supervision and fraud protection. The detection of terrorist behavior in the social media is essential to every country, but has complexities in both the supervision of shared content and in the understanding of behavior. Therefore, in this project an artificial intelligence enabled Detection Terrorist behavior system (ALT-TERROS) as a key priority was developed. The key requirements for a terrorist behavior detection system operating in the Kingdom are: (i) Data integration, (ii) Advanced smart analysis capacity and (iii) Decision making capability. The unique value proposition is based on a sophisticated integrated approach to the management of distributed data available on social media, which uses advanced social mining methods for the detection of patterns of terrorist behavior, its visualization and use for decision making. In addition, several critical issues related to the availability of APIs to handle Arabic text as well as the need to provide an end-to-end workflow from the extraction of textual and visual data over social media to the deliverable of advanced analytics and visualizations for rating mechanisms were highlighted. The key contribution of our approach is a testbed for the application of novel scientific approaches and algorithms for the rating of harm associated to social media content. The complexity of the problem does not allow hyper-optimistic solutions, but the combination of heuristic rules and advanced decision-making capabilities is toward the right direction. We contribute to the body of the theory of Sentiment Analysis for Arabic content and we also summarize a heuristic algorithm developed for the future. In the future research directions, we emphasize on the need to develop trusted Arabic thesaurus and corpus for the use sentiment analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment antiterrorism detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Twitter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabic tweets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jussila, Jari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jambi, Kamal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Visvizi, Anna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qureshi, Hafsa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lytras, Miltiadis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malibari, Areej</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adham, Raniah Samir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Future generation computer systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1984</subfield><subfield code="g">116, Seite 132-144</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604284</subfield><subfield code="w">(DE-600)2020551-X</subfield><subfield code="w">(DE-576)094399212</subfield><subfield code="x">0167-739X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield><subfield code="g">pages:132-144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield><subfield code="h">132-144</subfield></datafield></record></collection>
|
score |
7.3993654 |