Efficient low-order system identification from low-quality step response data with rank-constrained optimization
In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process ind...
Ausführliche Beschreibung
Autor*in: |
Liu, Qingyuan [verfasserIn] Shang, Chao [verfasserIn] Huang, Dexian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Control engineering practice - Amsterdam [u.a.] : Elsevier Science, 1993, 107 |
---|---|
Übergeordnetes Werk: |
volume:107 |
DOI / URN: |
10.1016/j.conengprac.2020.104671 |
---|
Katalog-ID: |
ELV005250846 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005250846 | ||
003 | DE-627 | ||
005 | 20230524161125.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.conengprac.2020.104671 |2 doi | |
035 | |a (DE-627)ELV005250846 | ||
035 | |a (ELSEVIER)S0967-0661(20)30241-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 50.23 |2 bkl | ||
100 | 1 | |a Liu, Qingyuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficient low-order system identification from low-quality step response data with rank-constrained optimization |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process industries. To address these challenges, we propose a novel rank-constrained optimization approach to low-order system identification from step response data, which yields much more accurate and robust estimates than existing modeling methods. By exploiting the inherent low-rank structure of the Hankel matrix of ideal step response, parameters of a low-order process can be accurately recovered by solving a rank-constrained program, which effectively bypasses the two-step procedure in some state-of-the-art algorithms involving significant error accumulation. The alternating direction method of multipliers is adopted to effectively solve the nonconvex error minimization problem and circumvent poor local optima. Case studies on both numerical examples and industrial datasets demonstrate that, the proposed method not only gives much better modeling accuracy, but also secures reliable and robust estimates even for raw low-quality industrial data. This is particularly helpful for automated execution of the identification routine without human intervention, with success percentage over 99% that is remarkably higher than the state-of-the-art. | ||
650 | 4 | |a System identification | |
650 | 4 | |a Step response test | |
650 | 4 | |a Rank-constrained optimization | |
650 | 4 | |a Time delay model | |
650 | 4 | |a Alternating direction method of multipliers | |
700 | 1 | |a Shang, Chao |e verfasserin |4 aut | |
700 | 1 | |a Huang, Dexian |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Control engineering practice |d Amsterdam [u.a.] : Elsevier Science, 1993 |g 107 |h Online-Ressource |w (DE-627)306716119 |w (DE-600)1501351-0 |w (DE-576)259271012 |x 1873-6939 |7 nnns |
773 | 1 | 8 | |g volume:107 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.23 |j Regelungstechnik |j Steuerungstechnik |
951 | |a AR | ||
952 | |d 107 |
author_variant |
q l ql c s cs d h dh |
---|---|
matchkey_str |
article:18736939:2020----::fiinlwresseietfctofolwultsersosdtwtr |
hierarchy_sort_str |
2020 |
bklnumber |
50.23 |
publishDate |
2020 |
allfields |
10.1016/j.conengprac.2020.104671 doi (DE-627)ELV005250846 (ELSEVIER)S0967-0661(20)30241-0 DE-627 ger DE-627 rda eng 620 DE-600 50.23 bkl Liu, Qingyuan verfasserin aut Efficient low-order system identification from low-quality step response data with rank-constrained optimization 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process industries. To address these challenges, we propose a novel rank-constrained optimization approach to low-order system identification from step response data, which yields much more accurate and robust estimates than existing modeling methods. By exploiting the inherent low-rank structure of the Hankel matrix of ideal step response, parameters of a low-order process can be accurately recovered by solving a rank-constrained program, which effectively bypasses the two-step procedure in some state-of-the-art algorithms involving significant error accumulation. The alternating direction method of multipliers is adopted to effectively solve the nonconvex error minimization problem and circumvent poor local optima. Case studies on both numerical examples and industrial datasets demonstrate that, the proposed method not only gives much better modeling accuracy, but also secures reliable and robust estimates even for raw low-quality industrial data. This is particularly helpful for automated execution of the identification routine without human intervention, with success percentage over 99% that is remarkably higher than the state-of-the-art. System identification Step response test Rank-constrained optimization Time delay model Alternating direction method of multipliers Shang, Chao verfasserin aut Huang, Dexian verfasserin aut Enthalten in Control engineering practice Amsterdam [u.a.] : Elsevier Science, 1993 107 Online-Ressource (DE-627)306716119 (DE-600)1501351-0 (DE-576)259271012 1873-6939 nnns volume:107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik AR 107 |
spelling |
10.1016/j.conengprac.2020.104671 doi (DE-627)ELV005250846 (ELSEVIER)S0967-0661(20)30241-0 DE-627 ger DE-627 rda eng 620 DE-600 50.23 bkl Liu, Qingyuan verfasserin aut Efficient low-order system identification from low-quality step response data with rank-constrained optimization 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process industries. To address these challenges, we propose a novel rank-constrained optimization approach to low-order system identification from step response data, which yields much more accurate and robust estimates than existing modeling methods. By exploiting the inherent low-rank structure of the Hankel matrix of ideal step response, parameters of a low-order process can be accurately recovered by solving a rank-constrained program, which effectively bypasses the two-step procedure in some state-of-the-art algorithms involving significant error accumulation. The alternating direction method of multipliers is adopted to effectively solve the nonconvex error minimization problem and circumvent poor local optima. Case studies on both numerical examples and industrial datasets demonstrate that, the proposed method not only gives much better modeling accuracy, but also secures reliable and robust estimates even for raw low-quality industrial data. This is particularly helpful for automated execution of the identification routine without human intervention, with success percentage over 99% that is remarkably higher than the state-of-the-art. System identification Step response test Rank-constrained optimization Time delay model Alternating direction method of multipliers Shang, Chao verfasserin aut Huang, Dexian verfasserin aut Enthalten in Control engineering practice Amsterdam [u.a.] : Elsevier Science, 1993 107 Online-Ressource (DE-627)306716119 (DE-600)1501351-0 (DE-576)259271012 1873-6939 nnns volume:107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik AR 107 |
allfields_unstemmed |
10.1016/j.conengprac.2020.104671 doi (DE-627)ELV005250846 (ELSEVIER)S0967-0661(20)30241-0 DE-627 ger DE-627 rda eng 620 DE-600 50.23 bkl Liu, Qingyuan verfasserin aut Efficient low-order system identification from low-quality step response data with rank-constrained optimization 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process industries. To address these challenges, we propose a novel rank-constrained optimization approach to low-order system identification from step response data, which yields much more accurate and robust estimates than existing modeling methods. By exploiting the inherent low-rank structure of the Hankel matrix of ideal step response, parameters of a low-order process can be accurately recovered by solving a rank-constrained program, which effectively bypasses the two-step procedure in some state-of-the-art algorithms involving significant error accumulation. The alternating direction method of multipliers is adopted to effectively solve the nonconvex error minimization problem and circumvent poor local optima. Case studies on both numerical examples and industrial datasets demonstrate that, the proposed method not only gives much better modeling accuracy, but also secures reliable and robust estimates even for raw low-quality industrial data. This is particularly helpful for automated execution of the identification routine without human intervention, with success percentage over 99% that is remarkably higher than the state-of-the-art. System identification Step response test Rank-constrained optimization Time delay model Alternating direction method of multipliers Shang, Chao verfasserin aut Huang, Dexian verfasserin aut Enthalten in Control engineering practice Amsterdam [u.a.] : Elsevier Science, 1993 107 Online-Ressource (DE-627)306716119 (DE-600)1501351-0 (DE-576)259271012 1873-6939 nnns volume:107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik AR 107 |
allfieldsGer |
10.1016/j.conengprac.2020.104671 doi (DE-627)ELV005250846 (ELSEVIER)S0967-0661(20)30241-0 DE-627 ger DE-627 rda eng 620 DE-600 50.23 bkl Liu, Qingyuan verfasserin aut Efficient low-order system identification from low-quality step response data with rank-constrained optimization 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process industries. To address these challenges, we propose a novel rank-constrained optimization approach to low-order system identification from step response data, which yields much more accurate and robust estimates than existing modeling methods. By exploiting the inherent low-rank structure of the Hankel matrix of ideal step response, parameters of a low-order process can be accurately recovered by solving a rank-constrained program, which effectively bypasses the two-step procedure in some state-of-the-art algorithms involving significant error accumulation. The alternating direction method of multipliers is adopted to effectively solve the nonconvex error minimization problem and circumvent poor local optima. Case studies on both numerical examples and industrial datasets demonstrate that, the proposed method not only gives much better modeling accuracy, but also secures reliable and robust estimates even for raw low-quality industrial data. This is particularly helpful for automated execution of the identification routine without human intervention, with success percentage over 99% that is remarkably higher than the state-of-the-art. System identification Step response test Rank-constrained optimization Time delay model Alternating direction method of multipliers Shang, Chao verfasserin aut Huang, Dexian verfasserin aut Enthalten in Control engineering practice Amsterdam [u.a.] : Elsevier Science, 1993 107 Online-Ressource (DE-627)306716119 (DE-600)1501351-0 (DE-576)259271012 1873-6939 nnns volume:107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik AR 107 |
allfieldsSound |
10.1016/j.conengprac.2020.104671 doi (DE-627)ELV005250846 (ELSEVIER)S0967-0661(20)30241-0 DE-627 ger DE-627 rda eng 620 DE-600 50.23 bkl Liu, Qingyuan verfasserin aut Efficient low-order system identification from low-quality step response data with rank-constrained optimization 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process industries. To address these challenges, we propose a novel rank-constrained optimization approach to low-order system identification from step response data, which yields much more accurate and robust estimates than existing modeling methods. By exploiting the inherent low-rank structure of the Hankel matrix of ideal step response, parameters of a low-order process can be accurately recovered by solving a rank-constrained program, which effectively bypasses the two-step procedure in some state-of-the-art algorithms involving significant error accumulation. The alternating direction method of multipliers is adopted to effectively solve the nonconvex error minimization problem and circumvent poor local optima. Case studies on both numerical examples and industrial datasets demonstrate that, the proposed method not only gives much better modeling accuracy, but also secures reliable and robust estimates even for raw low-quality industrial data. This is particularly helpful for automated execution of the identification routine without human intervention, with success percentage over 99% that is remarkably higher than the state-of-the-art. System identification Step response test Rank-constrained optimization Time delay model Alternating direction method of multipliers Shang, Chao verfasserin aut Huang, Dexian verfasserin aut Enthalten in Control engineering practice Amsterdam [u.a.] : Elsevier Science, 1993 107 Online-Ressource (DE-627)306716119 (DE-600)1501351-0 (DE-576)259271012 1873-6939 nnns volume:107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik AR 107 |
language |
English |
source |
Enthalten in Control engineering practice 107 volume:107 |
sourceStr |
Enthalten in Control engineering practice 107 volume:107 |
format_phy_str_mv |
Article |
bklname |
Regelungstechnik Steuerungstechnik |
institution |
findex.gbv.de |
topic_facet |
System identification Step response test Rank-constrained optimization Time delay model Alternating direction method of multipliers |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Control engineering practice |
authorswithroles_txt_mv |
Liu, Qingyuan @@aut@@ Shang, Chao @@aut@@ Huang, Dexian @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306716119 |
dewey-sort |
3620 |
id |
ELV005250846 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005250846</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161125.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.conengprac.2020.104671</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005250846</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0967-0661(20)30241-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Qingyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient low-order system identification from low-quality step response data with rank-constrained optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process industries. To address these challenges, we propose a novel rank-constrained optimization approach to low-order system identification from step response data, which yields much more accurate and robust estimates than existing modeling methods. By exploiting the inherent low-rank structure of the Hankel matrix of ideal step response, parameters of a low-order process can be accurately recovered by solving a rank-constrained program, which effectively bypasses the two-step procedure in some state-of-the-art algorithms involving significant error accumulation. The alternating direction method of multipliers is adopted to effectively solve the nonconvex error minimization problem and circumvent poor local optima. Case studies on both numerical examples and industrial datasets demonstrate that, the proposed method not only gives much better modeling accuracy, but also secures reliable and robust estimates even for raw low-quality industrial data. This is particularly helpful for automated execution of the identification routine without human intervention, with success percentage over 99% that is remarkably higher than the state-of-the-art.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Step response test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rank-constrained optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time delay model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alternating direction method of multipliers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shang, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Dexian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Control engineering practice</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1993</subfield><subfield code="g">107</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306716119</subfield><subfield code="w">(DE-600)1501351-0</subfield><subfield code="w">(DE-576)259271012</subfield><subfield code="x">1873-6939</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="j">Regelungstechnik</subfield><subfield code="j">Steuerungstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">107</subfield></datafield></record></collection>
|
author |
Liu, Qingyuan |
spellingShingle |
Liu, Qingyuan ddc 620 bkl 50.23 misc System identification misc Step response test misc Rank-constrained optimization misc Time delay model misc Alternating direction method of multipliers Efficient low-order system identification from low-quality step response data with rank-constrained optimization |
authorStr |
Liu, Qingyuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306716119 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-6939 |
topic_title |
620 DE-600 50.23 bkl Efficient low-order system identification from low-quality step response data with rank-constrained optimization System identification Step response test Rank-constrained optimization Time delay model Alternating direction method of multipliers |
topic |
ddc 620 bkl 50.23 misc System identification misc Step response test misc Rank-constrained optimization misc Time delay model misc Alternating direction method of multipliers |
topic_unstemmed |
ddc 620 bkl 50.23 misc System identification misc Step response test misc Rank-constrained optimization misc Time delay model misc Alternating direction method of multipliers |
topic_browse |
ddc 620 bkl 50.23 misc System identification misc Step response test misc Rank-constrained optimization misc Time delay model misc Alternating direction method of multipliers |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Control engineering practice |
hierarchy_parent_id |
306716119 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Control engineering practice |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306716119 (DE-600)1501351-0 (DE-576)259271012 |
title |
Efficient low-order system identification from low-quality step response data with rank-constrained optimization |
ctrlnum |
(DE-627)ELV005250846 (ELSEVIER)S0967-0661(20)30241-0 |
title_full |
Efficient low-order system identification from low-quality step response data with rank-constrained optimization |
author_sort |
Liu, Qingyuan |
journal |
Control engineering practice |
journalStr |
Control engineering practice |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Qingyuan Shang, Chao Huang, Dexian |
container_volume |
107 |
class |
620 DE-600 50.23 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Qingyuan |
doi_str_mv |
10.1016/j.conengprac.2020.104671 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
efficient low-order system identification from low-quality step response data with rank-constrained optimization |
title_auth |
Efficient low-order system identification from low-quality step response data with rank-constrained optimization |
abstract |
In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process industries. To address these challenges, we propose a novel rank-constrained optimization approach to low-order system identification from step response data, which yields much more accurate and robust estimates than existing modeling methods. By exploiting the inherent low-rank structure of the Hankel matrix of ideal step response, parameters of a low-order process can be accurately recovered by solving a rank-constrained program, which effectively bypasses the two-step procedure in some state-of-the-art algorithms involving significant error accumulation. The alternating direction method of multipliers is adopted to effectively solve the nonconvex error minimization problem and circumvent poor local optima. Case studies on both numerical examples and industrial datasets demonstrate that, the proposed method not only gives much better modeling accuracy, but also secures reliable and robust estimates even for raw low-quality industrial data. This is particularly helpful for automated execution of the identification routine without human intervention, with success percentage over 99% that is remarkably higher than the state-of-the-art. |
abstractGer |
In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process industries. To address these challenges, we propose a novel rank-constrained optimization approach to low-order system identification from step response data, which yields much more accurate and robust estimates than existing modeling methods. By exploiting the inherent low-rank structure of the Hankel matrix of ideal step response, parameters of a low-order process can be accurately recovered by solving a rank-constrained program, which effectively bypasses the two-step procedure in some state-of-the-art algorithms involving significant error accumulation. The alternating direction method of multipliers is adopted to effectively solve the nonconvex error minimization problem and circumvent poor local optima. Case studies on both numerical examples and industrial datasets demonstrate that, the proposed method not only gives much better modeling accuracy, but also secures reliable and robust estimates even for raw low-quality industrial data. This is particularly helpful for automated execution of the identification routine without human intervention, with success percentage over 99% that is remarkably higher than the state-of-the-art. |
abstract_unstemmed |
In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process industries. To address these challenges, we propose a novel rank-constrained optimization approach to low-order system identification from step response data, which yields much more accurate and robust estimates than existing modeling methods. By exploiting the inherent low-rank structure of the Hankel matrix of ideal step response, parameters of a low-order process can be accurately recovered by solving a rank-constrained program, which effectively bypasses the two-step procedure in some state-of-the-art algorithms involving significant error accumulation. The alternating direction method of multipliers is adopted to effectively solve the nonconvex error minimization problem and circumvent poor local optima. Case studies on both numerical examples and industrial datasets demonstrate that, the proposed method not only gives much better modeling accuracy, but also secures reliable and robust estimates even for raw low-quality industrial data. This is particularly helpful for automated execution of the identification routine without human intervention, with success percentage over 99% that is remarkably higher than the state-of-the-art. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Efficient low-order system identification from low-quality step response data with rank-constrained optimization |
remote_bool |
true |
author2 |
Shang, Chao Huang, Dexian |
author2Str |
Shang, Chao Huang, Dexian |
ppnlink |
306716119 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.conengprac.2020.104671 |
up_date |
2024-07-06T17:19:46.126Z |
_version_ |
1803851017622650880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005250846</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161125.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.conengprac.2020.104671</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005250846</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0967-0661(20)30241-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Qingyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient low-order system identification from low-quality step response data with rank-constrained optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the presence of low-quality industrial process data, generic step response identification methods typically show unsatisfactory performance and heavily rely on manual intervention of technical personnel. This erects obvious obstacles for the advancement of intelligent manufacturing in process industries. To address these challenges, we propose a novel rank-constrained optimization approach to low-order system identification from step response data, which yields much more accurate and robust estimates than existing modeling methods. By exploiting the inherent low-rank structure of the Hankel matrix of ideal step response, parameters of a low-order process can be accurately recovered by solving a rank-constrained program, which effectively bypasses the two-step procedure in some state-of-the-art algorithms involving significant error accumulation. The alternating direction method of multipliers is adopted to effectively solve the nonconvex error minimization problem and circumvent poor local optima. Case studies on both numerical examples and industrial datasets demonstrate that, the proposed method not only gives much better modeling accuracy, but also secures reliable and robust estimates even for raw low-quality industrial data. This is particularly helpful for automated execution of the identification routine without human intervention, with success percentage over 99% that is remarkably higher than the state-of-the-art.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Step response test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rank-constrained optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time delay model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alternating direction method of multipliers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shang, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Dexian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Control engineering practice</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1993</subfield><subfield code="g">107</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306716119</subfield><subfield code="w">(DE-600)1501351-0</subfield><subfield code="w">(DE-576)259271012</subfield><subfield code="x">1873-6939</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="j">Regelungstechnik</subfield><subfield code="j">Steuerungstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">107</subfield></datafield></record></collection>
|
score |
7.399441 |