Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release
Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of t...
Ausführliche Beschreibung
Autor*in: |
Wang, Qiaobo [verfasserIn] Pei, Shufeng [verfasserIn] Song, Haojun [verfasserIn] Huang, Lijuan [verfasserIn] Zhang, Liang [verfasserIn] Tang, Junshi [verfasserIn] Guan, Wenlong [verfasserIn] Ren, Shaoran [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of petroleum science and engineering - Amsterdam [u.a.] : Elsevier Science, 1987, 197 |
---|---|
Übergeordnetes Werk: |
volume:197 |
DOI / URN: |
10.1016/j.petrol.2020.107957 |
---|
Katalog-ID: |
ELV005295815 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005295815 | ||
003 | DE-627 | ||
005 | 20230524154102.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.petrol.2020.107957 |2 doi | |
035 | |a (DE-627)ELV005295815 | ||
035 | |a (ELSEVIER)S0920-4105(20)31012-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 38.51 |2 bkl | ||
084 | |a 57.36 |2 bkl | ||
100 | 1 | |a Wang, Qiaobo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of the technology. So that injection of oxygen-reduced air has been proposed to eliminate and control the explosion of oil/gas mixture with air. In this study, low-temperature oxidation experiments of heavy oil samples were conducted using a small batch reactor under the pressure of 5–15 MPa and oxygen content of 5%–15% at 225 °C in order to investigate the effect of oxygen content and pressure on the reaction rate and heat release during oxidation of heavy oil with oxygen-reduced air. The variations of temperature and pressure during the oxidation reaction were measured in the experiment, and the explosion phenomena of heavy oils were observed in the air with high oxygen contents (oxygen content more than 15%). The reaction rate and the exothermic heat of the reaction were calculated based on the pressure and temperature curves and using an improved heat loss model. The experimental results showed that reducing the oxygen content (e.g. reduced oxygen less than 10%) in air can effectively prevent the explosion of oil-gas mixtures, and the reaction rate and heat release during heavy oil oxidation are linearly proportional to pressure and oxygen content in the injected air when oil is in excess. The results of this study indicate that the heat generated in oil oxidation, which is important for the ISC and AACSS processes, can be controlled by pressure and oxygen content of the injected air, which can lay a good foundation for the oxygen-reduced air injection technique, especially for its application in deep heavy oil reservoirs, in which injection of oxygen-reduced air at high pressure can offset the effect of low oxygen content on heat release. | ||
650 | 4 | |a Air injection | |
650 | 4 | |a Oxygen reduced air | |
650 | 4 | |a Heat release | |
650 | 4 | |a Low temperature oxidation | |
650 | 4 | |a Exothermic characteristic | |
700 | 1 | |a Pei, Shufeng |e verfasserin |4 aut | |
700 | 1 | |a Song, Haojun |e verfasserin |4 aut | |
700 | 1 | |a Huang, Lijuan |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Liang |e verfasserin |4 aut | |
700 | 1 | |a Tang, Junshi |e verfasserin |4 aut | |
700 | 1 | |a Guan, Wenlong |e verfasserin |4 aut | |
700 | 1 | |a Ren, Shaoran |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of petroleum science and engineering |d Amsterdam [u.a.] : Elsevier Science, 1987 |g 197 |h Online-Ressource |w (DE-627)303393076 |w (DE-600)1494872-2 |w (DE-576)259484024 |7 nnns |
773 | 1 | 8 | |g volume:197 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.51 |j Geologie fossiler Brennstoffe |
936 | b | k | |a 57.36 |j Erdölgewinnung |j Erdgasgewinnung |
951 | |a AR | ||
952 | |d 197 |
author_variant |
q w qw s p sp h s hs l h lh l z lz j t jt w g wg s r sr |
---|---|
matchkey_str |
wangqiaobopeishufengsonghaojunhuanglijua:2020----:otmeauexdtoohayiioyerdcdiefcopesradx |
hierarchy_sort_str |
2020 |
bklnumber |
38.51 57.36 |
publishDate |
2020 |
allfields |
10.1016/j.petrol.2020.107957 doi (DE-627)ELV005295815 (ELSEVIER)S0920-4105(20)31012-3 DE-627 ger DE-627 rda eng 660 DE-600 38.51 bkl 57.36 bkl Wang, Qiaobo verfasserin aut Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of the technology. So that injection of oxygen-reduced air has been proposed to eliminate and control the explosion of oil/gas mixture with air. In this study, low-temperature oxidation experiments of heavy oil samples were conducted using a small batch reactor under the pressure of 5–15 MPa and oxygen content of 5%–15% at 225 °C in order to investigate the effect of oxygen content and pressure on the reaction rate and heat release during oxidation of heavy oil with oxygen-reduced air. The variations of temperature and pressure during the oxidation reaction were measured in the experiment, and the explosion phenomena of heavy oils were observed in the air with high oxygen contents (oxygen content more than 15%). The reaction rate and the exothermic heat of the reaction were calculated based on the pressure and temperature curves and using an improved heat loss model. The experimental results showed that reducing the oxygen content (e.g. reduced oxygen less than 10%) in air can effectively prevent the explosion of oil-gas mixtures, and the reaction rate and heat release during heavy oil oxidation are linearly proportional to pressure and oxygen content in the injected air when oil is in excess. The results of this study indicate that the heat generated in oil oxidation, which is important for the ISC and AACSS processes, can be controlled by pressure and oxygen content of the injected air, which can lay a good foundation for the oxygen-reduced air injection technique, especially for its application in deep heavy oil reservoirs, in which injection of oxygen-reduced air at high pressure can offset the effect of low oxygen content on heat release. Air injection Oxygen reduced air Heat release Low temperature oxidation Exothermic characteristic Pei, Shufeng verfasserin aut Song, Haojun verfasserin aut Huang, Lijuan verfasserin aut Zhang, Liang verfasserin aut Tang, Junshi verfasserin aut Guan, Wenlong verfasserin aut Ren, Shaoran verfasserin aut Enthalten in Journal of petroleum science and engineering Amsterdam [u.a.] : Elsevier Science, 1987 197 Online-Ressource (DE-627)303393076 (DE-600)1494872-2 (DE-576)259484024 nnns volume:197 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.51 Geologie fossiler Brennstoffe 57.36 Erdölgewinnung Erdgasgewinnung AR 197 |
spelling |
10.1016/j.petrol.2020.107957 doi (DE-627)ELV005295815 (ELSEVIER)S0920-4105(20)31012-3 DE-627 ger DE-627 rda eng 660 DE-600 38.51 bkl 57.36 bkl Wang, Qiaobo verfasserin aut Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of the technology. So that injection of oxygen-reduced air has been proposed to eliminate and control the explosion of oil/gas mixture with air. In this study, low-temperature oxidation experiments of heavy oil samples were conducted using a small batch reactor under the pressure of 5–15 MPa and oxygen content of 5%–15% at 225 °C in order to investigate the effect of oxygen content and pressure on the reaction rate and heat release during oxidation of heavy oil with oxygen-reduced air. The variations of temperature and pressure during the oxidation reaction were measured in the experiment, and the explosion phenomena of heavy oils were observed in the air with high oxygen contents (oxygen content more than 15%). The reaction rate and the exothermic heat of the reaction were calculated based on the pressure and temperature curves and using an improved heat loss model. The experimental results showed that reducing the oxygen content (e.g. reduced oxygen less than 10%) in air can effectively prevent the explosion of oil-gas mixtures, and the reaction rate and heat release during heavy oil oxidation are linearly proportional to pressure and oxygen content in the injected air when oil is in excess. The results of this study indicate that the heat generated in oil oxidation, which is important for the ISC and AACSS processes, can be controlled by pressure and oxygen content of the injected air, which can lay a good foundation for the oxygen-reduced air injection technique, especially for its application in deep heavy oil reservoirs, in which injection of oxygen-reduced air at high pressure can offset the effect of low oxygen content on heat release. Air injection Oxygen reduced air Heat release Low temperature oxidation Exothermic characteristic Pei, Shufeng verfasserin aut Song, Haojun verfasserin aut Huang, Lijuan verfasserin aut Zhang, Liang verfasserin aut Tang, Junshi verfasserin aut Guan, Wenlong verfasserin aut Ren, Shaoran verfasserin aut Enthalten in Journal of petroleum science and engineering Amsterdam [u.a.] : Elsevier Science, 1987 197 Online-Ressource (DE-627)303393076 (DE-600)1494872-2 (DE-576)259484024 nnns volume:197 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.51 Geologie fossiler Brennstoffe 57.36 Erdölgewinnung Erdgasgewinnung AR 197 |
allfields_unstemmed |
10.1016/j.petrol.2020.107957 doi (DE-627)ELV005295815 (ELSEVIER)S0920-4105(20)31012-3 DE-627 ger DE-627 rda eng 660 DE-600 38.51 bkl 57.36 bkl Wang, Qiaobo verfasserin aut Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of the technology. So that injection of oxygen-reduced air has been proposed to eliminate and control the explosion of oil/gas mixture with air. In this study, low-temperature oxidation experiments of heavy oil samples were conducted using a small batch reactor under the pressure of 5–15 MPa and oxygen content of 5%–15% at 225 °C in order to investigate the effect of oxygen content and pressure on the reaction rate and heat release during oxidation of heavy oil with oxygen-reduced air. The variations of temperature and pressure during the oxidation reaction were measured in the experiment, and the explosion phenomena of heavy oils were observed in the air with high oxygen contents (oxygen content more than 15%). The reaction rate and the exothermic heat of the reaction were calculated based on the pressure and temperature curves and using an improved heat loss model. The experimental results showed that reducing the oxygen content (e.g. reduced oxygen less than 10%) in air can effectively prevent the explosion of oil-gas mixtures, and the reaction rate and heat release during heavy oil oxidation are linearly proportional to pressure and oxygen content in the injected air when oil is in excess. The results of this study indicate that the heat generated in oil oxidation, which is important for the ISC and AACSS processes, can be controlled by pressure and oxygen content of the injected air, which can lay a good foundation for the oxygen-reduced air injection technique, especially for its application in deep heavy oil reservoirs, in which injection of oxygen-reduced air at high pressure can offset the effect of low oxygen content on heat release. Air injection Oxygen reduced air Heat release Low temperature oxidation Exothermic characteristic Pei, Shufeng verfasserin aut Song, Haojun verfasserin aut Huang, Lijuan verfasserin aut Zhang, Liang verfasserin aut Tang, Junshi verfasserin aut Guan, Wenlong verfasserin aut Ren, Shaoran verfasserin aut Enthalten in Journal of petroleum science and engineering Amsterdam [u.a.] : Elsevier Science, 1987 197 Online-Ressource (DE-627)303393076 (DE-600)1494872-2 (DE-576)259484024 nnns volume:197 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.51 Geologie fossiler Brennstoffe 57.36 Erdölgewinnung Erdgasgewinnung AR 197 |
allfieldsGer |
10.1016/j.petrol.2020.107957 doi (DE-627)ELV005295815 (ELSEVIER)S0920-4105(20)31012-3 DE-627 ger DE-627 rda eng 660 DE-600 38.51 bkl 57.36 bkl Wang, Qiaobo verfasserin aut Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of the technology. So that injection of oxygen-reduced air has been proposed to eliminate and control the explosion of oil/gas mixture with air. In this study, low-temperature oxidation experiments of heavy oil samples were conducted using a small batch reactor under the pressure of 5–15 MPa and oxygen content of 5%–15% at 225 °C in order to investigate the effect of oxygen content and pressure on the reaction rate and heat release during oxidation of heavy oil with oxygen-reduced air. The variations of temperature and pressure during the oxidation reaction were measured in the experiment, and the explosion phenomena of heavy oils were observed in the air with high oxygen contents (oxygen content more than 15%). The reaction rate and the exothermic heat of the reaction were calculated based on the pressure and temperature curves and using an improved heat loss model. The experimental results showed that reducing the oxygen content (e.g. reduced oxygen less than 10%) in air can effectively prevent the explosion of oil-gas mixtures, and the reaction rate and heat release during heavy oil oxidation are linearly proportional to pressure and oxygen content in the injected air when oil is in excess. The results of this study indicate that the heat generated in oil oxidation, which is important for the ISC and AACSS processes, can be controlled by pressure and oxygen content of the injected air, which can lay a good foundation for the oxygen-reduced air injection technique, especially for its application in deep heavy oil reservoirs, in which injection of oxygen-reduced air at high pressure can offset the effect of low oxygen content on heat release. Air injection Oxygen reduced air Heat release Low temperature oxidation Exothermic characteristic Pei, Shufeng verfasserin aut Song, Haojun verfasserin aut Huang, Lijuan verfasserin aut Zhang, Liang verfasserin aut Tang, Junshi verfasserin aut Guan, Wenlong verfasserin aut Ren, Shaoran verfasserin aut Enthalten in Journal of petroleum science and engineering Amsterdam [u.a.] : Elsevier Science, 1987 197 Online-Ressource (DE-627)303393076 (DE-600)1494872-2 (DE-576)259484024 nnns volume:197 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.51 Geologie fossiler Brennstoffe 57.36 Erdölgewinnung Erdgasgewinnung AR 197 |
allfieldsSound |
10.1016/j.petrol.2020.107957 doi (DE-627)ELV005295815 (ELSEVIER)S0920-4105(20)31012-3 DE-627 ger DE-627 rda eng 660 DE-600 38.51 bkl 57.36 bkl Wang, Qiaobo verfasserin aut Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of the technology. So that injection of oxygen-reduced air has been proposed to eliminate and control the explosion of oil/gas mixture with air. In this study, low-temperature oxidation experiments of heavy oil samples were conducted using a small batch reactor under the pressure of 5–15 MPa and oxygen content of 5%–15% at 225 °C in order to investigate the effect of oxygen content and pressure on the reaction rate and heat release during oxidation of heavy oil with oxygen-reduced air. The variations of temperature and pressure during the oxidation reaction were measured in the experiment, and the explosion phenomena of heavy oils were observed in the air with high oxygen contents (oxygen content more than 15%). The reaction rate and the exothermic heat of the reaction were calculated based on the pressure and temperature curves and using an improved heat loss model. The experimental results showed that reducing the oxygen content (e.g. reduced oxygen less than 10%) in air can effectively prevent the explosion of oil-gas mixtures, and the reaction rate and heat release during heavy oil oxidation are linearly proportional to pressure and oxygen content in the injected air when oil is in excess. The results of this study indicate that the heat generated in oil oxidation, which is important for the ISC and AACSS processes, can be controlled by pressure and oxygen content of the injected air, which can lay a good foundation for the oxygen-reduced air injection technique, especially for its application in deep heavy oil reservoirs, in which injection of oxygen-reduced air at high pressure can offset the effect of low oxygen content on heat release. Air injection Oxygen reduced air Heat release Low temperature oxidation Exothermic characteristic Pei, Shufeng verfasserin aut Song, Haojun verfasserin aut Huang, Lijuan verfasserin aut Zhang, Liang verfasserin aut Tang, Junshi verfasserin aut Guan, Wenlong verfasserin aut Ren, Shaoran verfasserin aut Enthalten in Journal of petroleum science and engineering Amsterdam [u.a.] : Elsevier Science, 1987 197 Online-Ressource (DE-627)303393076 (DE-600)1494872-2 (DE-576)259484024 nnns volume:197 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.51 Geologie fossiler Brennstoffe 57.36 Erdölgewinnung Erdgasgewinnung AR 197 |
language |
English |
source |
Enthalten in Journal of petroleum science and engineering 197 volume:197 |
sourceStr |
Enthalten in Journal of petroleum science and engineering 197 volume:197 |
format_phy_str_mv |
Article |
bklname |
Geologie fossiler Brennstoffe Erdölgewinnung Erdgasgewinnung |
institution |
findex.gbv.de |
topic_facet |
Air injection Oxygen reduced air Heat release Low temperature oxidation Exothermic characteristic |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of petroleum science and engineering |
authorswithroles_txt_mv |
Wang, Qiaobo @@aut@@ Pei, Shufeng @@aut@@ Song, Haojun @@aut@@ Huang, Lijuan @@aut@@ Zhang, Liang @@aut@@ Tang, Junshi @@aut@@ Guan, Wenlong @@aut@@ Ren, Shaoran @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
303393076 |
dewey-sort |
3660 |
id |
ELV005295815 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005295815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154102.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.petrol.2020.107957</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005295815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0920-4105(20)31012-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Qiaobo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of the technology. So that injection of oxygen-reduced air has been proposed to eliminate and control the explosion of oil/gas mixture with air. In this study, low-temperature oxidation experiments of heavy oil samples were conducted using a small batch reactor under the pressure of 5–15 MPa and oxygen content of 5%–15% at 225 °C in order to investigate the effect of oxygen content and pressure on the reaction rate and heat release during oxidation of heavy oil with oxygen-reduced air. The variations of temperature and pressure during the oxidation reaction were measured in the experiment, and the explosion phenomena of heavy oils were observed in the air with high oxygen contents (oxygen content more than 15%). The reaction rate and the exothermic heat of the reaction were calculated based on the pressure and temperature curves and using an improved heat loss model. The experimental results showed that reducing the oxygen content (e.g. reduced oxygen less than 10%) in air can effectively prevent the explosion of oil-gas mixtures, and the reaction rate and heat release during heavy oil oxidation are linearly proportional to pressure and oxygen content in the injected air when oil is in excess. The results of this study indicate that the heat generated in oil oxidation, which is important for the ISC and AACSS processes, can be controlled by pressure and oxygen content of the injected air, which can lay a good foundation for the oxygen-reduced air injection technique, especially for its application in deep heavy oil reservoirs, in which injection of oxygen-reduced air at high pressure can offset the effect of low oxygen content on heat release.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen reduced air</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat release</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low temperature oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exothermic characteristic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pei, Shufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Haojun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Lijuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Junshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guan, Wenlong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Shaoran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of petroleum science and engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1987</subfield><subfield code="g">197</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)303393076</subfield><subfield code="w">(DE-600)1494872-2</subfield><subfield code="w">(DE-576)259484024</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:197</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.51</subfield><subfield code="j">Geologie fossiler Brennstoffe</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">57.36</subfield><subfield code="j">Erdölgewinnung</subfield><subfield code="j">Erdgasgewinnung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">197</subfield></datafield></record></collection>
|
author |
Wang, Qiaobo |
spellingShingle |
Wang, Qiaobo ddc 660 bkl 38.51 bkl 57.36 misc Air injection misc Oxygen reduced air misc Heat release misc Low temperature oxidation misc Exothermic characteristic Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release |
authorStr |
Wang, Qiaobo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)303393076 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 DE-600 38.51 bkl 57.36 bkl Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release Air injection Oxygen reduced air Heat release Low temperature oxidation Exothermic characteristic |
topic |
ddc 660 bkl 38.51 bkl 57.36 misc Air injection misc Oxygen reduced air misc Heat release misc Low temperature oxidation misc Exothermic characteristic |
topic_unstemmed |
ddc 660 bkl 38.51 bkl 57.36 misc Air injection misc Oxygen reduced air misc Heat release misc Low temperature oxidation misc Exothermic characteristic |
topic_browse |
ddc 660 bkl 38.51 bkl 57.36 misc Air injection misc Oxygen reduced air misc Heat release misc Low temperature oxidation misc Exothermic characteristic |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of petroleum science and engineering |
hierarchy_parent_id |
303393076 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of petroleum science and engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)303393076 (DE-600)1494872-2 (DE-576)259484024 |
title |
Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release |
ctrlnum |
(DE-627)ELV005295815 (ELSEVIER)S0920-4105(20)31012-3 |
title_full |
Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release |
author_sort |
Wang, Qiaobo |
journal |
Journal of petroleum science and engineering |
journalStr |
Journal of petroleum science and engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Qiaobo Pei, Shufeng Song, Haojun Huang, Lijuan Zhang, Liang Tang, Junshi Guan, Wenlong Ren, Shaoran |
container_volume |
197 |
class |
660 DE-600 38.51 bkl 57.36 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Qiaobo |
doi_str_mv |
10.1016/j.petrol.2020.107957 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
low temperature oxidation of heavy oil in oxygen-reduced air: effect of pressure and oxygen content on heat release |
title_auth |
Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release |
abstract |
Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of the technology. So that injection of oxygen-reduced air has been proposed to eliminate and control the explosion of oil/gas mixture with air. In this study, low-temperature oxidation experiments of heavy oil samples were conducted using a small batch reactor under the pressure of 5–15 MPa and oxygen content of 5%–15% at 225 °C in order to investigate the effect of oxygen content and pressure on the reaction rate and heat release during oxidation of heavy oil with oxygen-reduced air. The variations of temperature and pressure during the oxidation reaction were measured in the experiment, and the explosion phenomena of heavy oils were observed in the air with high oxygen contents (oxygen content more than 15%). The reaction rate and the exothermic heat of the reaction were calculated based on the pressure and temperature curves and using an improved heat loss model. The experimental results showed that reducing the oxygen content (e.g. reduced oxygen less than 10%) in air can effectively prevent the explosion of oil-gas mixtures, and the reaction rate and heat release during heavy oil oxidation are linearly proportional to pressure and oxygen content in the injected air when oil is in excess. The results of this study indicate that the heat generated in oil oxidation, which is important for the ISC and AACSS processes, can be controlled by pressure and oxygen content of the injected air, which can lay a good foundation for the oxygen-reduced air injection technique, especially for its application in deep heavy oil reservoirs, in which injection of oxygen-reduced air at high pressure can offset the effect of low oxygen content on heat release. |
abstractGer |
Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of the technology. So that injection of oxygen-reduced air has been proposed to eliminate and control the explosion of oil/gas mixture with air. In this study, low-temperature oxidation experiments of heavy oil samples were conducted using a small batch reactor under the pressure of 5–15 MPa and oxygen content of 5%–15% at 225 °C in order to investigate the effect of oxygen content and pressure on the reaction rate and heat release during oxidation of heavy oil with oxygen-reduced air. The variations of temperature and pressure during the oxidation reaction were measured in the experiment, and the explosion phenomena of heavy oils were observed in the air with high oxygen contents (oxygen content more than 15%). The reaction rate and the exothermic heat of the reaction were calculated based on the pressure and temperature curves and using an improved heat loss model. The experimental results showed that reducing the oxygen content (e.g. reduced oxygen less than 10%) in air can effectively prevent the explosion of oil-gas mixtures, and the reaction rate and heat release during heavy oil oxidation are linearly proportional to pressure and oxygen content in the injected air when oil is in excess. The results of this study indicate that the heat generated in oil oxidation, which is important for the ISC and AACSS processes, can be controlled by pressure and oxygen content of the injected air, which can lay a good foundation for the oxygen-reduced air injection technique, especially for its application in deep heavy oil reservoirs, in which injection of oxygen-reduced air at high pressure can offset the effect of low oxygen content on heat release. |
abstract_unstemmed |
Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of the technology. So that injection of oxygen-reduced air has been proposed to eliminate and control the explosion of oil/gas mixture with air. In this study, low-temperature oxidation experiments of heavy oil samples were conducted using a small batch reactor under the pressure of 5–15 MPa and oxygen content of 5%–15% at 225 °C in order to investigate the effect of oxygen content and pressure on the reaction rate and heat release during oxidation of heavy oil with oxygen-reduced air. The variations of temperature and pressure during the oxidation reaction were measured in the experiment, and the explosion phenomena of heavy oils were observed in the air with high oxygen contents (oxygen content more than 15%). The reaction rate and the exothermic heat of the reaction were calculated based on the pressure and temperature curves and using an improved heat loss model. The experimental results showed that reducing the oxygen content (e.g. reduced oxygen less than 10%) in air can effectively prevent the explosion of oil-gas mixtures, and the reaction rate and heat release during heavy oil oxidation are linearly proportional to pressure and oxygen content in the injected air when oil is in excess. The results of this study indicate that the heat generated in oil oxidation, which is important for the ISC and AACSS processes, can be controlled by pressure and oxygen content of the injected air, which can lay a good foundation for the oxygen-reduced air injection technique, especially for its application in deep heavy oil reservoirs, in which injection of oxygen-reduced air at high pressure can offset the effect of low oxygen content on heat release. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release |
remote_bool |
true |
author2 |
Pei, Shufeng Song, Haojun Huang, Lijuan Zhang, Liang Tang, Junshi Guan, Wenlong Ren, Shaoran |
author2Str |
Pei, Shufeng Song, Haojun Huang, Lijuan Zhang, Liang Tang, Junshi Guan, Wenlong Ren, Shaoran |
ppnlink |
303393076 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.petrol.2020.107957 |
up_date |
2024-07-06T17:28:52.616Z |
_version_ |
1803851590657900544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005295815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154102.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.petrol.2020.107957</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005295815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0920-4105(20)31012-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Qiaobo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low temperature oxidation of heavy oil in oxygen-reduced air: Effect of pressure and oxygen content on heat release</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Air injection for in situ combustion (ISC) and air injection assisted cyclic steam stimulation (AACSS) techniques have a good application prospective in the development of heavy oils, while the explosion risk in the process of air injection is of great concern and has restricted the application of the technology. So that injection of oxygen-reduced air has been proposed to eliminate and control the explosion of oil/gas mixture with air. In this study, low-temperature oxidation experiments of heavy oil samples were conducted using a small batch reactor under the pressure of 5–15 MPa and oxygen content of 5%–15% at 225 °C in order to investigate the effect of oxygen content and pressure on the reaction rate and heat release during oxidation of heavy oil with oxygen-reduced air. The variations of temperature and pressure during the oxidation reaction were measured in the experiment, and the explosion phenomena of heavy oils were observed in the air with high oxygen contents (oxygen content more than 15%). The reaction rate and the exothermic heat of the reaction were calculated based on the pressure and temperature curves and using an improved heat loss model. The experimental results showed that reducing the oxygen content (e.g. reduced oxygen less than 10%) in air can effectively prevent the explosion of oil-gas mixtures, and the reaction rate and heat release during heavy oil oxidation are linearly proportional to pressure and oxygen content in the injected air when oil is in excess. The results of this study indicate that the heat generated in oil oxidation, which is important for the ISC and AACSS processes, can be controlled by pressure and oxygen content of the injected air, which can lay a good foundation for the oxygen-reduced air injection technique, especially for its application in deep heavy oil reservoirs, in which injection of oxygen-reduced air at high pressure can offset the effect of low oxygen content on heat release.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen reduced air</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat release</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low temperature oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exothermic characteristic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pei, Shufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Haojun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Lijuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Junshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guan, Wenlong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Shaoran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of petroleum science and engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1987</subfield><subfield code="g">197</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)303393076</subfield><subfield code="w">(DE-600)1494872-2</subfield><subfield code="w">(DE-576)259484024</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:197</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.51</subfield><subfield code="j">Geologie fossiler Brennstoffe</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">57.36</subfield><subfield code="j">Erdölgewinnung</subfield><subfield code="j">Erdgasgewinnung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">197</subfield></datafield></record></collection>
|
score |
7.4012203 |