Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant
Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration...
Ausführliche Beschreibung
Autor*in: |
Gao, Teng [verfasserIn] Li, Changhe [verfasserIn] Yang, Min [verfasserIn] Zhang, Yanbin [verfasserIn] Jia, Dongzhou [verfasserIn] Ding, Wenfeng [verfasserIn] Debnath, Sujan [verfasserIn] Yu, Tianbiao [verfasserIn] Said, Zafar [verfasserIn] Wang, Jun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials processing technology - Amsterdam [u.a.] : Elsevier, 1990, 290 |
---|---|
Übergeordnetes Werk: |
volume:290 |
DOI / URN: |
10.1016/j.jmatprotec.2020.116976 |
---|
Katalog-ID: |
ELV00534235X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00534235X | ||
003 | DE-627 | ||
005 | 20230524163555.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmatprotec.2020.116976 |2 doi | |
035 | |a (DE-627)ELV00534235X | ||
035 | |a (ELSEVIER)S0924-0136(20)30397-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q DE-600 |
084 | |a 51.00 |2 bkl | ||
084 | |a 52.74 |2 bkl | ||
100 | 1 | |a Gao, Teng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration of surface integrity, which cause it not suitable in aeroengine and aerostructure applications. Aiming to resolve the above gaps, the grinding mechanics for a single grain of CFRPs involving CNT nano-lubricant minimum quantity lubrication (MQL) is explored. To reveal the various fundamental mechanisms in machining CFRP of special transversal grinding and lubrication conditions, four sub-models were developed based on the unique geometries of grain and fiber in contact due to the random fiber arrangements and grain edge shapes under different undeformed chip thicknesses. Specifically, the models account ⅰ) the contact force model between the grain tip and fibers, ⅱ) the local contact stress model of elliptical region between the spherical grain edge and cylindrical fiber, ⅲ) the tensile fracture force model of single fiber regarded as an bending beam fixed at both ends and constrained on the elastic foundation, and ⅳ) the extrusion and shearing force model on the cut fiber section at the grinding groove. Furthermore, the grinding force model is obtained by integrating these sub-models, in which the grain-fiber friction coefficient and grinding mechanics are accurately introduced. Finally, the model is numerically simulated and the trend of force along the entire grinding arc length is obtained. Experimental verifications demonstrate the approach for predicting the grinding force have acceptable accuracy and can successfully capture the mechanics of CFRPs. The model reveals that the tensile fracture force of single fiber has the most contributions to the grinding force. | ||
650 | 4 | |a Grinding | |
650 | 4 | |a Mnimum quantity lubrication | |
650 | 4 | |a Mechanical model | |
650 | 4 | |a Carbon fiber-reinforced polymer | |
650 | 4 | |a Single grain | |
650 | 4 | |a CNT nano-lubricant | |
700 | 1 | |a Li, Changhe |e verfasserin |4 aut | |
700 | 1 | |a Yang, Min |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Yanbin |e verfasserin |4 aut | |
700 | 1 | |a Jia, Dongzhou |e verfasserin |4 aut | |
700 | 1 | |a Ding, Wenfeng |e verfasserin |4 aut | |
700 | 1 | |a Debnath, Sujan |e verfasserin |4 aut | |
700 | 1 | |a Yu, Tianbiao |e verfasserin |4 aut | |
700 | 1 | |a Said, Zafar |e verfasserin |4 aut | |
700 | 1 | |a Wang, Jun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials processing technology |d Amsterdam [u.a.] : Elsevier, 1990 |g 290 |h Online-Ressource |w (DE-627)320504514 |w (DE-600)2012658-X |w (DE-576)259484741 |7 nnns |
773 | 1 | 8 | |g volume:290 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |
936 | b | k | |a 52.74 |j Werkstoffbearbeitung |j Werkzeugmaschinen: Allgemeines |
951 | |a AR | ||
952 | |d 290 |
author_variant |
t g tg c l cl m y my y z yz d j dj w d wd s d sd t y ty z s zs j w jw |
---|---|
matchkey_str |
gaotenglichangheyangminzhangyanbinjiadon:2020----:ehncaayiadrdcieocmdlfrhsnldaodrigidnocrofbreno |
hierarchy_sort_str |
2020 |
bklnumber |
51.00 52.74 |
publishDate |
2020 |
allfields |
10.1016/j.jmatprotec.2020.116976 doi (DE-627)ELV00534235X (ELSEVIER)S0924-0136(20)30397-6 DE-627 ger DE-627 rda eng 670 DE-600 51.00 bkl 52.74 bkl Gao, Teng verfasserin aut Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration of surface integrity, which cause it not suitable in aeroengine and aerostructure applications. Aiming to resolve the above gaps, the grinding mechanics for a single grain of CFRPs involving CNT nano-lubricant minimum quantity lubrication (MQL) is explored. To reveal the various fundamental mechanisms in machining CFRP of special transversal grinding and lubrication conditions, four sub-models were developed based on the unique geometries of grain and fiber in contact due to the random fiber arrangements and grain edge shapes under different undeformed chip thicknesses. Specifically, the models account ⅰ) the contact force model between the grain tip and fibers, ⅱ) the local contact stress model of elliptical region between the spherical grain edge and cylindrical fiber, ⅲ) the tensile fracture force model of single fiber regarded as an bending beam fixed at both ends and constrained on the elastic foundation, and ⅳ) the extrusion and shearing force model on the cut fiber section at the grinding groove. Furthermore, the grinding force model is obtained by integrating these sub-models, in which the grain-fiber friction coefficient and grinding mechanics are accurately introduced. Finally, the model is numerically simulated and the trend of force along the entire grinding arc length is obtained. Experimental verifications demonstrate the approach for predicting the grinding force have acceptable accuracy and can successfully capture the mechanics of CFRPs. The model reveals that the tensile fracture force of single fiber has the most contributions to the grinding force. Grinding Mnimum quantity lubrication Mechanical model Carbon fiber-reinforced polymer Single grain CNT nano-lubricant Li, Changhe verfasserin aut Yang, Min verfasserin aut Zhang, Yanbin verfasserin aut Jia, Dongzhou verfasserin aut Ding, Wenfeng verfasserin aut Debnath, Sujan verfasserin aut Yu, Tianbiao verfasserin aut Said, Zafar verfasserin aut Wang, Jun verfasserin aut Enthalten in Journal of materials processing technology Amsterdam [u.a.] : Elsevier, 1990 290 Online-Ressource (DE-627)320504514 (DE-600)2012658-X (DE-576)259484741 nnns volume:290 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.00 Werkstoffkunde: Allgemeines 52.74 Werkstoffbearbeitung Werkzeugmaschinen: Allgemeines AR 290 |
spelling |
10.1016/j.jmatprotec.2020.116976 doi (DE-627)ELV00534235X (ELSEVIER)S0924-0136(20)30397-6 DE-627 ger DE-627 rda eng 670 DE-600 51.00 bkl 52.74 bkl Gao, Teng verfasserin aut Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration of surface integrity, which cause it not suitable in aeroengine and aerostructure applications. Aiming to resolve the above gaps, the grinding mechanics for a single grain of CFRPs involving CNT nano-lubricant minimum quantity lubrication (MQL) is explored. To reveal the various fundamental mechanisms in machining CFRP of special transversal grinding and lubrication conditions, four sub-models were developed based on the unique geometries of grain and fiber in contact due to the random fiber arrangements and grain edge shapes under different undeformed chip thicknesses. Specifically, the models account ⅰ) the contact force model between the grain tip and fibers, ⅱ) the local contact stress model of elliptical region between the spherical grain edge and cylindrical fiber, ⅲ) the tensile fracture force model of single fiber regarded as an bending beam fixed at both ends and constrained on the elastic foundation, and ⅳ) the extrusion and shearing force model on the cut fiber section at the grinding groove. Furthermore, the grinding force model is obtained by integrating these sub-models, in which the grain-fiber friction coefficient and grinding mechanics are accurately introduced. Finally, the model is numerically simulated and the trend of force along the entire grinding arc length is obtained. Experimental verifications demonstrate the approach for predicting the grinding force have acceptable accuracy and can successfully capture the mechanics of CFRPs. The model reveals that the tensile fracture force of single fiber has the most contributions to the grinding force. Grinding Mnimum quantity lubrication Mechanical model Carbon fiber-reinforced polymer Single grain CNT nano-lubricant Li, Changhe verfasserin aut Yang, Min verfasserin aut Zhang, Yanbin verfasserin aut Jia, Dongzhou verfasserin aut Ding, Wenfeng verfasserin aut Debnath, Sujan verfasserin aut Yu, Tianbiao verfasserin aut Said, Zafar verfasserin aut Wang, Jun verfasserin aut Enthalten in Journal of materials processing technology Amsterdam [u.a.] : Elsevier, 1990 290 Online-Ressource (DE-627)320504514 (DE-600)2012658-X (DE-576)259484741 nnns volume:290 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.00 Werkstoffkunde: Allgemeines 52.74 Werkstoffbearbeitung Werkzeugmaschinen: Allgemeines AR 290 |
allfields_unstemmed |
10.1016/j.jmatprotec.2020.116976 doi (DE-627)ELV00534235X (ELSEVIER)S0924-0136(20)30397-6 DE-627 ger DE-627 rda eng 670 DE-600 51.00 bkl 52.74 bkl Gao, Teng verfasserin aut Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration of surface integrity, which cause it not suitable in aeroengine and aerostructure applications. Aiming to resolve the above gaps, the grinding mechanics for a single grain of CFRPs involving CNT nano-lubricant minimum quantity lubrication (MQL) is explored. To reveal the various fundamental mechanisms in machining CFRP of special transversal grinding and lubrication conditions, four sub-models were developed based on the unique geometries of grain and fiber in contact due to the random fiber arrangements and grain edge shapes under different undeformed chip thicknesses. Specifically, the models account ⅰ) the contact force model between the grain tip and fibers, ⅱ) the local contact stress model of elliptical region between the spherical grain edge and cylindrical fiber, ⅲ) the tensile fracture force model of single fiber regarded as an bending beam fixed at both ends and constrained on the elastic foundation, and ⅳ) the extrusion and shearing force model on the cut fiber section at the grinding groove. Furthermore, the grinding force model is obtained by integrating these sub-models, in which the grain-fiber friction coefficient and grinding mechanics are accurately introduced. Finally, the model is numerically simulated and the trend of force along the entire grinding arc length is obtained. Experimental verifications demonstrate the approach for predicting the grinding force have acceptable accuracy and can successfully capture the mechanics of CFRPs. The model reveals that the tensile fracture force of single fiber has the most contributions to the grinding force. Grinding Mnimum quantity lubrication Mechanical model Carbon fiber-reinforced polymer Single grain CNT nano-lubricant Li, Changhe verfasserin aut Yang, Min verfasserin aut Zhang, Yanbin verfasserin aut Jia, Dongzhou verfasserin aut Ding, Wenfeng verfasserin aut Debnath, Sujan verfasserin aut Yu, Tianbiao verfasserin aut Said, Zafar verfasserin aut Wang, Jun verfasserin aut Enthalten in Journal of materials processing technology Amsterdam [u.a.] : Elsevier, 1990 290 Online-Ressource (DE-627)320504514 (DE-600)2012658-X (DE-576)259484741 nnns volume:290 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.00 Werkstoffkunde: Allgemeines 52.74 Werkstoffbearbeitung Werkzeugmaschinen: Allgemeines AR 290 |
allfieldsGer |
10.1016/j.jmatprotec.2020.116976 doi (DE-627)ELV00534235X (ELSEVIER)S0924-0136(20)30397-6 DE-627 ger DE-627 rda eng 670 DE-600 51.00 bkl 52.74 bkl Gao, Teng verfasserin aut Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration of surface integrity, which cause it not suitable in aeroengine and aerostructure applications. Aiming to resolve the above gaps, the grinding mechanics for a single grain of CFRPs involving CNT nano-lubricant minimum quantity lubrication (MQL) is explored. To reveal the various fundamental mechanisms in machining CFRP of special transversal grinding and lubrication conditions, four sub-models were developed based on the unique geometries of grain and fiber in contact due to the random fiber arrangements and grain edge shapes under different undeformed chip thicknesses. Specifically, the models account ⅰ) the contact force model between the grain tip and fibers, ⅱ) the local contact stress model of elliptical region between the spherical grain edge and cylindrical fiber, ⅲ) the tensile fracture force model of single fiber regarded as an bending beam fixed at both ends and constrained on the elastic foundation, and ⅳ) the extrusion and shearing force model on the cut fiber section at the grinding groove. Furthermore, the grinding force model is obtained by integrating these sub-models, in which the grain-fiber friction coefficient and grinding mechanics are accurately introduced. Finally, the model is numerically simulated and the trend of force along the entire grinding arc length is obtained. Experimental verifications demonstrate the approach for predicting the grinding force have acceptable accuracy and can successfully capture the mechanics of CFRPs. The model reveals that the tensile fracture force of single fiber has the most contributions to the grinding force. Grinding Mnimum quantity lubrication Mechanical model Carbon fiber-reinforced polymer Single grain CNT nano-lubricant Li, Changhe verfasserin aut Yang, Min verfasserin aut Zhang, Yanbin verfasserin aut Jia, Dongzhou verfasserin aut Ding, Wenfeng verfasserin aut Debnath, Sujan verfasserin aut Yu, Tianbiao verfasserin aut Said, Zafar verfasserin aut Wang, Jun verfasserin aut Enthalten in Journal of materials processing technology Amsterdam [u.a.] : Elsevier, 1990 290 Online-Ressource (DE-627)320504514 (DE-600)2012658-X (DE-576)259484741 nnns volume:290 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.00 Werkstoffkunde: Allgemeines 52.74 Werkstoffbearbeitung Werkzeugmaschinen: Allgemeines AR 290 |
allfieldsSound |
10.1016/j.jmatprotec.2020.116976 doi (DE-627)ELV00534235X (ELSEVIER)S0924-0136(20)30397-6 DE-627 ger DE-627 rda eng 670 DE-600 51.00 bkl 52.74 bkl Gao, Teng verfasserin aut Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration of surface integrity, which cause it not suitable in aeroengine and aerostructure applications. Aiming to resolve the above gaps, the grinding mechanics for a single grain of CFRPs involving CNT nano-lubricant minimum quantity lubrication (MQL) is explored. To reveal the various fundamental mechanisms in machining CFRP of special transversal grinding and lubrication conditions, four sub-models were developed based on the unique geometries of grain and fiber in contact due to the random fiber arrangements and grain edge shapes under different undeformed chip thicknesses. Specifically, the models account ⅰ) the contact force model between the grain tip and fibers, ⅱ) the local contact stress model of elliptical region between the spherical grain edge and cylindrical fiber, ⅲ) the tensile fracture force model of single fiber regarded as an bending beam fixed at both ends and constrained on the elastic foundation, and ⅳ) the extrusion and shearing force model on the cut fiber section at the grinding groove. Furthermore, the grinding force model is obtained by integrating these sub-models, in which the grain-fiber friction coefficient and grinding mechanics are accurately introduced. Finally, the model is numerically simulated and the trend of force along the entire grinding arc length is obtained. Experimental verifications demonstrate the approach for predicting the grinding force have acceptable accuracy and can successfully capture the mechanics of CFRPs. The model reveals that the tensile fracture force of single fiber has the most contributions to the grinding force. Grinding Mnimum quantity lubrication Mechanical model Carbon fiber-reinforced polymer Single grain CNT nano-lubricant Li, Changhe verfasserin aut Yang, Min verfasserin aut Zhang, Yanbin verfasserin aut Jia, Dongzhou verfasserin aut Ding, Wenfeng verfasserin aut Debnath, Sujan verfasserin aut Yu, Tianbiao verfasserin aut Said, Zafar verfasserin aut Wang, Jun verfasserin aut Enthalten in Journal of materials processing technology Amsterdam [u.a.] : Elsevier, 1990 290 Online-Ressource (DE-627)320504514 (DE-600)2012658-X (DE-576)259484741 nnns volume:290 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.00 Werkstoffkunde: Allgemeines 52.74 Werkstoffbearbeitung Werkzeugmaschinen: Allgemeines AR 290 |
language |
English |
source |
Enthalten in Journal of materials processing technology 290 volume:290 |
sourceStr |
Enthalten in Journal of materials processing technology 290 volume:290 |
format_phy_str_mv |
Article |
bklname |
Werkstoffkunde: Allgemeines Werkstoffbearbeitung Werkzeugmaschinen: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Grinding Mnimum quantity lubrication Mechanical model Carbon fiber-reinforced polymer Single grain CNT nano-lubricant |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials processing technology |
authorswithroles_txt_mv |
Gao, Teng @@aut@@ Li, Changhe @@aut@@ Yang, Min @@aut@@ Zhang, Yanbin @@aut@@ Jia, Dongzhou @@aut@@ Ding, Wenfeng @@aut@@ Debnath, Sujan @@aut@@ Yu, Tianbiao @@aut@@ Said, Zafar @@aut@@ Wang, Jun @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320504514 |
dewey-sort |
3670 |
id |
ELV00534235X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00534235X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524163555.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmatprotec.2020.116976</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00534235X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0924-0136(20)30397-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gao, Teng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration of surface integrity, which cause it not suitable in aeroengine and aerostructure applications. Aiming to resolve the above gaps, the grinding mechanics for a single grain of CFRPs involving CNT nano-lubricant minimum quantity lubrication (MQL) is explored. To reveal the various fundamental mechanisms in machining CFRP of special transversal grinding and lubrication conditions, four sub-models were developed based on the unique geometries of grain and fiber in contact due to the random fiber arrangements and grain edge shapes under different undeformed chip thicknesses. Specifically, the models account ⅰ) the contact force model between the grain tip and fibers, ⅱ) the local contact stress model of elliptical region between the spherical grain edge and cylindrical fiber, ⅲ) the tensile fracture force model of single fiber regarded as an bending beam fixed at both ends and constrained on the elastic foundation, and ⅳ) the extrusion and shearing force model on the cut fiber section at the grinding groove. Furthermore, the grinding force model is obtained by integrating these sub-models, in which the grain-fiber friction coefficient and grinding mechanics are accurately introduced. Finally, the model is numerically simulated and the trend of force along the entire grinding arc length is obtained. Experimental verifications demonstrate the approach for predicting the grinding force have acceptable accuracy and can successfully capture the mechanics of CFRPs. The model reveals that the tensile fracture force of single fiber has the most contributions to the grinding force.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grinding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mnimum quantity lubrication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon fiber-reinforced polymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single grain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNT nano-lubricant</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Changhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yanbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Dongzhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Wenfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Debnath, Sujan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Tianbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Said, Zafar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials processing technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1990</subfield><subfield code="g">290</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504514</subfield><subfield code="w">(DE-600)2012658-X</subfield><subfield code="w">(DE-576)259484741</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.74</subfield><subfield code="j">Werkstoffbearbeitung</subfield><subfield code="j">Werkzeugmaschinen: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">290</subfield></datafield></record></collection>
|
author |
Gao, Teng |
spellingShingle |
Gao, Teng ddc 670 bkl 51.00 bkl 52.74 misc Grinding misc Mnimum quantity lubrication misc Mechanical model misc Carbon fiber-reinforced polymer misc Single grain misc CNT nano-lubricant Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant |
authorStr |
Gao, Teng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504514 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 DE-600 51.00 bkl 52.74 bkl Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant Grinding Mnimum quantity lubrication Mechanical model Carbon fiber-reinforced polymer Single grain CNT nano-lubricant |
topic |
ddc 670 bkl 51.00 bkl 52.74 misc Grinding misc Mnimum quantity lubrication misc Mechanical model misc Carbon fiber-reinforced polymer misc Single grain misc CNT nano-lubricant |
topic_unstemmed |
ddc 670 bkl 51.00 bkl 52.74 misc Grinding misc Mnimum quantity lubrication misc Mechanical model misc Carbon fiber-reinforced polymer misc Single grain misc CNT nano-lubricant |
topic_browse |
ddc 670 bkl 51.00 bkl 52.74 misc Grinding misc Mnimum quantity lubrication misc Mechanical model misc Carbon fiber-reinforced polymer misc Single grain misc CNT nano-lubricant |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of materials processing technology |
hierarchy_parent_id |
320504514 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials processing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504514 (DE-600)2012658-X (DE-576)259484741 |
title |
Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant |
ctrlnum |
(DE-627)ELV00534235X (ELSEVIER)S0924-0136(20)30397-6 |
title_full |
Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant |
author_sort |
Gao, Teng |
journal |
Journal of materials processing technology |
journalStr |
Journal of materials processing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Gao, Teng Li, Changhe Yang, Min Zhang, Yanbin Jia, Dongzhou Ding, Wenfeng Debnath, Sujan Yu, Tianbiao Said, Zafar Wang, Jun |
container_volume |
290 |
class |
670 DE-600 51.00 bkl 52.74 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gao, Teng |
doi_str_mv |
10.1016/j.jmatprotec.2020.116976 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using cnt nano-lubricant |
title_auth |
Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant |
abstract |
Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration of surface integrity, which cause it not suitable in aeroengine and aerostructure applications. Aiming to resolve the above gaps, the grinding mechanics for a single grain of CFRPs involving CNT nano-lubricant minimum quantity lubrication (MQL) is explored. To reveal the various fundamental mechanisms in machining CFRP of special transversal grinding and lubrication conditions, four sub-models were developed based on the unique geometries of grain and fiber in contact due to the random fiber arrangements and grain edge shapes under different undeformed chip thicknesses. Specifically, the models account ⅰ) the contact force model between the grain tip and fibers, ⅱ) the local contact stress model of elliptical region between the spherical grain edge and cylindrical fiber, ⅲ) the tensile fracture force model of single fiber regarded as an bending beam fixed at both ends and constrained on the elastic foundation, and ⅳ) the extrusion and shearing force model on the cut fiber section at the grinding groove. Furthermore, the grinding force model is obtained by integrating these sub-models, in which the grain-fiber friction coefficient and grinding mechanics are accurately introduced. Finally, the model is numerically simulated and the trend of force along the entire grinding arc length is obtained. Experimental verifications demonstrate the approach for predicting the grinding force have acceptable accuracy and can successfully capture the mechanics of CFRPs. The model reveals that the tensile fracture force of single fiber has the most contributions to the grinding force. |
abstractGer |
Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration of surface integrity, which cause it not suitable in aeroengine and aerostructure applications. Aiming to resolve the above gaps, the grinding mechanics for a single grain of CFRPs involving CNT nano-lubricant minimum quantity lubrication (MQL) is explored. To reveal the various fundamental mechanisms in machining CFRP of special transversal grinding and lubrication conditions, four sub-models were developed based on the unique geometries of grain and fiber in contact due to the random fiber arrangements and grain edge shapes under different undeformed chip thicknesses. Specifically, the models account ⅰ) the contact force model between the grain tip and fibers, ⅱ) the local contact stress model of elliptical region between the spherical grain edge and cylindrical fiber, ⅲ) the tensile fracture force model of single fiber regarded as an bending beam fixed at both ends and constrained on the elastic foundation, and ⅳ) the extrusion and shearing force model on the cut fiber section at the grinding groove. Furthermore, the grinding force model is obtained by integrating these sub-models, in which the grain-fiber friction coefficient and grinding mechanics are accurately introduced. Finally, the model is numerically simulated and the trend of force along the entire grinding arc length is obtained. Experimental verifications demonstrate the approach for predicting the grinding force have acceptable accuracy and can successfully capture the mechanics of CFRPs. The model reveals that the tensile fracture force of single fiber has the most contributions to the grinding force. |
abstract_unstemmed |
Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration of surface integrity, which cause it not suitable in aeroengine and aerostructure applications. Aiming to resolve the above gaps, the grinding mechanics for a single grain of CFRPs involving CNT nano-lubricant minimum quantity lubrication (MQL) is explored. To reveal the various fundamental mechanisms in machining CFRP of special transversal grinding and lubrication conditions, four sub-models were developed based on the unique geometries of grain and fiber in contact due to the random fiber arrangements and grain edge shapes under different undeformed chip thicknesses. Specifically, the models account ⅰ) the contact force model between the grain tip and fibers, ⅱ) the local contact stress model of elliptical region between the spherical grain edge and cylindrical fiber, ⅲ) the tensile fracture force model of single fiber regarded as an bending beam fixed at both ends and constrained on the elastic foundation, and ⅳ) the extrusion and shearing force model on the cut fiber section at the grinding groove. Furthermore, the grinding force model is obtained by integrating these sub-models, in which the grain-fiber friction coefficient and grinding mechanics are accurately introduced. Finally, the model is numerically simulated and the trend of force along the entire grinding arc length is obtained. Experimental verifications demonstrate the approach for predicting the grinding force have acceptable accuracy and can successfully capture the mechanics of CFRPs. The model reveals that the tensile fracture force of single fiber has the most contributions to the grinding force. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant |
remote_bool |
true |
author2 |
Li, Changhe Yang, Min Zhang, Yanbin Jia, Dongzhou Ding, Wenfeng Debnath, Sujan Yu, Tianbiao Said, Zafar Wang, Jun |
author2Str |
Li, Changhe Yang, Min Zhang, Yanbin Jia, Dongzhou Ding, Wenfeng Debnath, Sujan Yu, Tianbiao Said, Zafar Wang, Jun |
ppnlink |
320504514 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmatprotec.2020.116976 |
up_date |
2024-07-06T17:38:36.733Z |
_version_ |
1803852203148967936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00534235X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524163555.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmatprotec.2020.116976</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00534235X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0924-0136(20)30397-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gao, Teng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machining of carbon fiber-reinforced polymer (CFRP) with less damage remains to be a challenge because of anisotropy and inhomogeneity issues. Flood cooling will reduce the mechanical properties of CFRPs due to its hygroscopicity, however, dry grinding will result in thermal damage and deterioration of surface integrity, which cause it not suitable in aeroengine and aerostructure applications. Aiming to resolve the above gaps, the grinding mechanics for a single grain of CFRPs involving CNT nano-lubricant minimum quantity lubrication (MQL) is explored. To reveal the various fundamental mechanisms in machining CFRP of special transversal grinding and lubrication conditions, four sub-models were developed based on the unique geometries of grain and fiber in contact due to the random fiber arrangements and grain edge shapes under different undeformed chip thicknesses. Specifically, the models account ⅰ) the contact force model between the grain tip and fibers, ⅱ) the local contact stress model of elliptical region between the spherical grain edge and cylindrical fiber, ⅲ) the tensile fracture force model of single fiber regarded as an bending beam fixed at both ends and constrained on the elastic foundation, and ⅳ) the extrusion and shearing force model on the cut fiber section at the grinding groove. Furthermore, the grinding force model is obtained by integrating these sub-models, in which the grain-fiber friction coefficient and grinding mechanics are accurately introduced. Finally, the model is numerically simulated and the trend of force along the entire grinding arc length is obtained. Experimental verifications demonstrate the approach for predicting the grinding force have acceptable accuracy and can successfully capture the mechanics of CFRPs. The model reveals that the tensile fracture force of single fiber has the most contributions to the grinding force.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grinding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mnimum quantity lubrication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon fiber-reinforced polymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single grain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNT nano-lubricant</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Changhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yanbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Dongzhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Wenfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Debnath, Sujan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Tianbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Said, Zafar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials processing technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1990</subfield><subfield code="g">290</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504514</subfield><subfield code="w">(DE-600)2012658-X</subfield><subfield code="w">(DE-576)259484741</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.74</subfield><subfield code="j">Werkstoffbearbeitung</subfield><subfield code="j">Werkzeugmaschinen: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">290</subfield></datafield></record></collection>
|
score |
7.4004908 |