Predicting the electricity consumption of urban rail transit based on binary nonlinear fitting regression and support vector regression

Predicting the energy consumption of urban rail transit is conducive to reducing energy consumption in the subway system. Therefore, binary nonlinear fitting regression (BNFR) and support vector regression (SVR) models are developed to predict total electricity, traction electricity, and heating ven...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Tang, Zhihua [verfasserIn]

Yin, Hua [verfasserIn]

Yang, Caiyun [verfasserIn]

Yu, Junyan [verfasserIn]

Guo, Huafang [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2020

Schlagwörter:

Urban rail transit

Energy consumption analysis

Energy consumption prediction

Support vector regression

Binary nonlinear fitting regression

Übergeordnetes Werk:

Enthalten in: Sustainable cities and society - Amsterdam [u.a.] : Elsevier, 2011, 66

Übergeordnetes Werk:

volume:66

DOI / URN:

10.1016/j.scs.2020.102690

Katalog-ID:

ELV005457556

Nicht das Richtige dabei?

Schreiben Sie uns!