Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs
This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the...
Ausführliche Beschreibung
Autor*in: |
Wang, Yan [verfasserIn] Shao, Xudong [verfasserIn] Cao, Junhui [verfasserIn] Zhao, Xudong [verfasserIn] Qiu, Minghong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering structures - Amsterdam [u.a.] : Elsevier Science, 1978, 231 |
---|---|
Übergeordnetes Werk: |
volume:231 |
DOI / URN: |
10.1016/j.engstruct.2020.111728 |
---|
Katalog-ID: |
ELV005491274 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005491274 | ||
003 | DE-627 | ||
005 | 20230524143342.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engstruct.2020.111728 |2 doi | |
035 | |a (DE-627)ELV005491274 | ||
035 | |a (ELSEVIER)S0141-0296(20)34329-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 38.38 |2 bkl | ||
084 | |a 56.20 |2 bkl | ||
084 | |a 56.11 |2 bkl | ||
100 | 1 | |a Wang, Yan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the deck under service loads, and then two kinds of steel bar reinforced UHPFRC decks with different steel fibers (i.e., hooked-end and straight steel fibers) were fabricated and tested to verify the design safety. Compared with traditional 280 mm-thick ordinary concrete decks, due to the high tensile strength (over 10 MPa) of the UHPFRC in this study, the deck thickness could be reduced to 170 mm with a maximum calculated tensile stress in the deck of 8.82 MPa induced by local wheel loads. Subsequently, the weight of the deck could be reduced by 35% due to the significant reduction in the deck thickness, leading to a smaller compressive stress (13.3 MPa) in the deck under service loads. In addition, in contrast to straight steel fibers, the use of hooked-end steel fibers could had a better advantage to increase in the crack resistance and post-cracking stiffness of the deck specimens. Due to the use of steel fibers and steel bars, cracks in the UHPFRC deck specimens propagated rather slowly under both static and fatigue loads. The deck specimens with hooked-end and straight steel fibers showed superior allowable tensile stresses of 23.2 MPa and 16.1 MPa, respectively, both satisfying the design requirement (8.82 MPa) of the bridge under service loads. The fatigue life of the former deck specimen was revealed as 9 million cycles under the stress range of 1.3–7.0 MPa only with a small reduction in the load carrying capacity, which greatly met the fatigue criteria of Chinese bridge design standards in terms of the crack width in UHPFRC. Based on the numerical and experimental investigations, the design safety of applying the UHPFRC deck was verified for the Malukou Bridge. | ||
650 | 4 | |a Ultra-high performance fiber reinforced concrete (UHPFRC) | |
650 | 4 | |a Composite girder | |
650 | 4 | |a Finite element | |
650 | 4 | |a Flexural performance | |
650 | 4 | |a Crack width | |
700 | 1 | |a Shao, Xudong |e verfasserin |4 aut | |
700 | 1 | |a Cao, Junhui |e verfasserin |4 aut | |
700 | 1 | |a Zhao, Xudong |e verfasserin |0 (orcid)0000-0002-5690-6974 |4 aut | |
700 | 1 | |a Qiu, Minghong |e verfasserin |0 (orcid)0000-0002-7803-7124 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Engineering structures |d Amsterdam [u.a.] : Elsevier Science, 1978 |g 231 |h Online-Ressource |w (DE-627)320423344 |w (DE-600)2002833-7 |w (DE-576)259271195 |x 0141-0296 |7 nnns |
773 | 1 | 8 | |g volume:231 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.38 |j Seismologie |
936 | b | k | |a 56.20 |j Ingenieurgeologie |j Bodenmechanik |
936 | b | k | |a 56.11 |j Baukonstruktion |
951 | |a AR | ||
952 | |d 231 |
author_variant |
y w yw x s xs j c jc x z xz m q mq |
---|---|
matchkey_str |
article:01410296:2021----::ttcnftgelxrlefracoutaihefracfbr |
hierarchy_sort_str |
2021 |
bklnumber |
38.38 56.20 56.11 |
publishDate |
2021 |
allfields |
10.1016/j.engstruct.2020.111728 doi (DE-627)ELV005491274 (ELSEVIER)S0141-0296(20)34329-7 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Wang, Yan verfasserin aut Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the deck under service loads, and then two kinds of steel bar reinforced UHPFRC decks with different steel fibers (i.e., hooked-end and straight steel fibers) were fabricated and tested to verify the design safety. Compared with traditional 280 mm-thick ordinary concrete decks, due to the high tensile strength (over 10 MPa) of the UHPFRC in this study, the deck thickness could be reduced to 170 mm with a maximum calculated tensile stress in the deck of 8.82 MPa induced by local wheel loads. Subsequently, the weight of the deck could be reduced by 35% due to the significant reduction in the deck thickness, leading to a smaller compressive stress (13.3 MPa) in the deck under service loads. In addition, in contrast to straight steel fibers, the use of hooked-end steel fibers could had a better advantage to increase in the crack resistance and post-cracking stiffness of the deck specimens. Due to the use of steel fibers and steel bars, cracks in the UHPFRC deck specimens propagated rather slowly under both static and fatigue loads. The deck specimens with hooked-end and straight steel fibers showed superior allowable tensile stresses of 23.2 MPa and 16.1 MPa, respectively, both satisfying the design requirement (8.82 MPa) of the bridge under service loads. The fatigue life of the former deck specimen was revealed as 9 million cycles under the stress range of 1.3–7.0 MPa only with a small reduction in the load carrying capacity, which greatly met the fatigue criteria of Chinese bridge design standards in terms of the crack width in UHPFRC. Based on the numerical and experimental investigations, the design safety of applying the UHPFRC deck was verified for the Malukou Bridge. Ultra-high performance fiber reinforced concrete (UHPFRC) Composite girder Finite element Flexural performance Crack width Shao, Xudong verfasserin aut Cao, Junhui verfasserin aut Zhao, Xudong verfasserin (orcid)0000-0002-5690-6974 aut Qiu, Minghong verfasserin (orcid)0000-0002-7803-7124 aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 231 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:231 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 231 |
spelling |
10.1016/j.engstruct.2020.111728 doi (DE-627)ELV005491274 (ELSEVIER)S0141-0296(20)34329-7 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Wang, Yan verfasserin aut Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the deck under service loads, and then two kinds of steel bar reinforced UHPFRC decks with different steel fibers (i.e., hooked-end and straight steel fibers) were fabricated and tested to verify the design safety. Compared with traditional 280 mm-thick ordinary concrete decks, due to the high tensile strength (over 10 MPa) of the UHPFRC in this study, the deck thickness could be reduced to 170 mm with a maximum calculated tensile stress in the deck of 8.82 MPa induced by local wheel loads. Subsequently, the weight of the deck could be reduced by 35% due to the significant reduction in the deck thickness, leading to a smaller compressive stress (13.3 MPa) in the deck under service loads. In addition, in contrast to straight steel fibers, the use of hooked-end steel fibers could had a better advantage to increase in the crack resistance and post-cracking stiffness of the deck specimens. Due to the use of steel fibers and steel bars, cracks in the UHPFRC deck specimens propagated rather slowly under both static and fatigue loads. The deck specimens with hooked-end and straight steel fibers showed superior allowable tensile stresses of 23.2 MPa and 16.1 MPa, respectively, both satisfying the design requirement (8.82 MPa) of the bridge under service loads. The fatigue life of the former deck specimen was revealed as 9 million cycles under the stress range of 1.3–7.0 MPa only with a small reduction in the load carrying capacity, which greatly met the fatigue criteria of Chinese bridge design standards in terms of the crack width in UHPFRC. Based on the numerical and experimental investigations, the design safety of applying the UHPFRC deck was verified for the Malukou Bridge. Ultra-high performance fiber reinforced concrete (UHPFRC) Composite girder Finite element Flexural performance Crack width Shao, Xudong verfasserin aut Cao, Junhui verfasserin aut Zhao, Xudong verfasserin (orcid)0000-0002-5690-6974 aut Qiu, Minghong verfasserin (orcid)0000-0002-7803-7124 aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 231 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:231 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 231 |
allfields_unstemmed |
10.1016/j.engstruct.2020.111728 doi (DE-627)ELV005491274 (ELSEVIER)S0141-0296(20)34329-7 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Wang, Yan verfasserin aut Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the deck under service loads, and then two kinds of steel bar reinforced UHPFRC decks with different steel fibers (i.e., hooked-end and straight steel fibers) were fabricated and tested to verify the design safety. Compared with traditional 280 mm-thick ordinary concrete decks, due to the high tensile strength (over 10 MPa) of the UHPFRC in this study, the deck thickness could be reduced to 170 mm with a maximum calculated tensile stress in the deck of 8.82 MPa induced by local wheel loads. Subsequently, the weight of the deck could be reduced by 35% due to the significant reduction in the deck thickness, leading to a smaller compressive stress (13.3 MPa) in the deck under service loads. In addition, in contrast to straight steel fibers, the use of hooked-end steel fibers could had a better advantage to increase in the crack resistance and post-cracking stiffness of the deck specimens. Due to the use of steel fibers and steel bars, cracks in the UHPFRC deck specimens propagated rather slowly under both static and fatigue loads. The deck specimens with hooked-end and straight steel fibers showed superior allowable tensile stresses of 23.2 MPa and 16.1 MPa, respectively, both satisfying the design requirement (8.82 MPa) of the bridge under service loads. The fatigue life of the former deck specimen was revealed as 9 million cycles under the stress range of 1.3–7.0 MPa only with a small reduction in the load carrying capacity, which greatly met the fatigue criteria of Chinese bridge design standards in terms of the crack width in UHPFRC. Based on the numerical and experimental investigations, the design safety of applying the UHPFRC deck was verified for the Malukou Bridge. Ultra-high performance fiber reinforced concrete (UHPFRC) Composite girder Finite element Flexural performance Crack width Shao, Xudong verfasserin aut Cao, Junhui verfasserin aut Zhao, Xudong verfasserin (orcid)0000-0002-5690-6974 aut Qiu, Minghong verfasserin (orcid)0000-0002-7803-7124 aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 231 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:231 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 231 |
allfieldsGer |
10.1016/j.engstruct.2020.111728 doi (DE-627)ELV005491274 (ELSEVIER)S0141-0296(20)34329-7 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Wang, Yan verfasserin aut Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the deck under service loads, and then two kinds of steel bar reinforced UHPFRC decks with different steel fibers (i.e., hooked-end and straight steel fibers) were fabricated and tested to verify the design safety. Compared with traditional 280 mm-thick ordinary concrete decks, due to the high tensile strength (over 10 MPa) of the UHPFRC in this study, the deck thickness could be reduced to 170 mm with a maximum calculated tensile stress in the deck of 8.82 MPa induced by local wheel loads. Subsequently, the weight of the deck could be reduced by 35% due to the significant reduction in the deck thickness, leading to a smaller compressive stress (13.3 MPa) in the deck under service loads. In addition, in contrast to straight steel fibers, the use of hooked-end steel fibers could had a better advantage to increase in the crack resistance and post-cracking stiffness of the deck specimens. Due to the use of steel fibers and steel bars, cracks in the UHPFRC deck specimens propagated rather slowly under both static and fatigue loads. The deck specimens with hooked-end and straight steel fibers showed superior allowable tensile stresses of 23.2 MPa and 16.1 MPa, respectively, both satisfying the design requirement (8.82 MPa) of the bridge under service loads. The fatigue life of the former deck specimen was revealed as 9 million cycles under the stress range of 1.3–7.0 MPa only with a small reduction in the load carrying capacity, which greatly met the fatigue criteria of Chinese bridge design standards in terms of the crack width in UHPFRC. Based on the numerical and experimental investigations, the design safety of applying the UHPFRC deck was verified for the Malukou Bridge. Ultra-high performance fiber reinforced concrete (UHPFRC) Composite girder Finite element Flexural performance Crack width Shao, Xudong verfasserin aut Cao, Junhui verfasserin aut Zhao, Xudong verfasserin (orcid)0000-0002-5690-6974 aut Qiu, Minghong verfasserin (orcid)0000-0002-7803-7124 aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 231 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:231 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 231 |
allfieldsSound |
10.1016/j.engstruct.2020.111728 doi (DE-627)ELV005491274 (ELSEVIER)S0141-0296(20)34329-7 DE-627 ger DE-627 rda eng 690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Wang, Yan verfasserin aut Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the deck under service loads, and then two kinds of steel bar reinforced UHPFRC decks with different steel fibers (i.e., hooked-end and straight steel fibers) were fabricated and tested to verify the design safety. Compared with traditional 280 mm-thick ordinary concrete decks, due to the high tensile strength (over 10 MPa) of the UHPFRC in this study, the deck thickness could be reduced to 170 mm with a maximum calculated tensile stress in the deck of 8.82 MPa induced by local wheel loads. Subsequently, the weight of the deck could be reduced by 35% due to the significant reduction in the deck thickness, leading to a smaller compressive stress (13.3 MPa) in the deck under service loads. In addition, in contrast to straight steel fibers, the use of hooked-end steel fibers could had a better advantage to increase in the crack resistance and post-cracking stiffness of the deck specimens. Due to the use of steel fibers and steel bars, cracks in the UHPFRC deck specimens propagated rather slowly under both static and fatigue loads. The deck specimens with hooked-end and straight steel fibers showed superior allowable tensile stresses of 23.2 MPa and 16.1 MPa, respectively, both satisfying the design requirement (8.82 MPa) of the bridge under service loads. The fatigue life of the former deck specimen was revealed as 9 million cycles under the stress range of 1.3–7.0 MPa only with a small reduction in the load carrying capacity, which greatly met the fatigue criteria of Chinese bridge design standards in terms of the crack width in UHPFRC. Based on the numerical and experimental investigations, the design safety of applying the UHPFRC deck was verified for the Malukou Bridge. Ultra-high performance fiber reinforced concrete (UHPFRC) Composite girder Finite element Flexural performance Crack width Shao, Xudong verfasserin aut Cao, Junhui verfasserin aut Zhao, Xudong verfasserin (orcid)0000-0002-5690-6974 aut Qiu, Minghong verfasserin (orcid)0000-0002-7803-7124 aut Enthalten in Engineering structures Amsterdam [u.a.] : Elsevier Science, 1978 231 Online-Ressource (DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 0141-0296 nnns volume:231 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.38 Seismologie 56.20 Ingenieurgeologie Bodenmechanik 56.11 Baukonstruktion AR 231 |
language |
English |
source |
Enthalten in Engineering structures 231 volume:231 |
sourceStr |
Enthalten in Engineering structures 231 volume:231 |
format_phy_str_mv |
Article |
bklname |
Seismologie Ingenieurgeologie Bodenmechanik Baukonstruktion |
institution |
findex.gbv.de |
topic_facet |
Ultra-high performance fiber reinforced concrete (UHPFRC) Composite girder Finite element Flexural performance Crack width |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Engineering structures |
authorswithroles_txt_mv |
Wang, Yan @@aut@@ Shao, Xudong @@aut@@ Cao, Junhui @@aut@@ Zhao, Xudong @@aut@@ Qiu, Minghong @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320423344 |
dewey-sort |
3690 |
id |
ELV005491274 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005491274</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143342.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engstruct.2020.111728</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005491274</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-0296(20)34329-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the deck under service loads, and then two kinds of steel bar reinforced UHPFRC decks with different steel fibers (i.e., hooked-end and straight steel fibers) were fabricated and tested to verify the design safety. Compared with traditional 280 mm-thick ordinary concrete decks, due to the high tensile strength (over 10 MPa) of the UHPFRC in this study, the deck thickness could be reduced to 170 mm with a maximum calculated tensile stress in the deck of 8.82 MPa induced by local wheel loads. Subsequently, the weight of the deck could be reduced by 35% due to the significant reduction in the deck thickness, leading to a smaller compressive stress (13.3 MPa) in the deck under service loads. In addition, in contrast to straight steel fibers, the use of hooked-end steel fibers could had a better advantage to increase in the crack resistance and post-cracking stiffness of the deck specimens. Due to the use of steel fibers and steel bars, cracks in the UHPFRC deck specimens propagated rather slowly under both static and fatigue loads. The deck specimens with hooked-end and straight steel fibers showed superior allowable tensile stresses of 23.2 MPa and 16.1 MPa, respectively, both satisfying the design requirement (8.82 MPa) of the bridge under service loads. The fatigue life of the former deck specimen was revealed as 9 million cycles under the stress range of 1.3–7.0 MPa only with a small reduction in the load carrying capacity, which greatly met the fatigue criteria of Chinese bridge design standards in terms of the crack width in UHPFRC. Based on the numerical and experimental investigations, the design safety of applying the UHPFRC deck was verified for the Malukou Bridge.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultra-high performance fiber reinforced concrete (UHPFRC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composite girder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexural performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack width</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Xudong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Junhui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Xudong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5690-6974</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Minghong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7803-7124</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">231</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423344</subfield><subfield code="w">(DE-600)2002833-7</subfield><subfield code="w">(DE-576)259271195</subfield><subfield code="x">0141-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.38</subfield><subfield code="j">Seismologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield></datafield></record></collection>
|
author |
Wang, Yan |
spellingShingle |
Wang, Yan ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc Ultra-high performance fiber reinforced concrete (UHPFRC) misc Composite girder misc Finite element misc Flexural performance misc Crack width Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs |
authorStr |
Wang, Yan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320423344 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0141-0296 |
topic_title |
690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs Ultra-high performance fiber reinforced concrete (UHPFRC) Composite girder Finite element Flexural performance Crack width |
topic |
ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc Ultra-high performance fiber reinforced concrete (UHPFRC) misc Composite girder misc Finite element misc Flexural performance misc Crack width |
topic_unstemmed |
ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc Ultra-high performance fiber reinforced concrete (UHPFRC) misc Composite girder misc Finite element misc Flexural performance misc Crack width |
topic_browse |
ddc 690 bkl 38.38 bkl 56.20 bkl 56.11 misc Ultra-high performance fiber reinforced concrete (UHPFRC) misc Composite girder misc Finite element misc Flexural performance misc Crack width |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering structures |
hierarchy_parent_id |
320423344 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Engineering structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320423344 (DE-600)2002833-7 (DE-576)259271195 |
title |
Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs |
ctrlnum |
(DE-627)ELV005491274 (ELSEVIER)S0141-0296(20)34329-7 |
title_full |
Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs |
author_sort |
Wang, Yan |
journal |
Engineering structures |
journalStr |
Engineering structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Yan Shao, Xudong Cao, Junhui Zhao, Xudong Qiu, Minghong |
container_volume |
231 |
class |
690 DE-600 38.38 bkl 56.20 bkl 56.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Yan |
doi_str_mv |
10.1016/j.engstruct.2020.111728 |
normlink |
(ORCID)0000-0002-5690-6974 (ORCID)0000-0002-7803-7124 |
normlink_prefix_str_mv |
(orcid)0000-0002-5690-6974 (orcid)0000-0002-7803-7124 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs |
title_auth |
Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs |
abstract |
This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the deck under service loads, and then two kinds of steel bar reinforced UHPFRC decks with different steel fibers (i.e., hooked-end and straight steel fibers) were fabricated and tested to verify the design safety. Compared with traditional 280 mm-thick ordinary concrete decks, due to the high tensile strength (over 10 MPa) of the UHPFRC in this study, the deck thickness could be reduced to 170 mm with a maximum calculated tensile stress in the deck of 8.82 MPa induced by local wheel loads. Subsequently, the weight of the deck could be reduced by 35% due to the significant reduction in the deck thickness, leading to a smaller compressive stress (13.3 MPa) in the deck under service loads. In addition, in contrast to straight steel fibers, the use of hooked-end steel fibers could had a better advantage to increase in the crack resistance and post-cracking stiffness of the deck specimens. Due to the use of steel fibers and steel bars, cracks in the UHPFRC deck specimens propagated rather slowly under both static and fatigue loads. The deck specimens with hooked-end and straight steel fibers showed superior allowable tensile stresses of 23.2 MPa and 16.1 MPa, respectively, both satisfying the design requirement (8.82 MPa) of the bridge under service loads. The fatigue life of the former deck specimen was revealed as 9 million cycles under the stress range of 1.3–7.0 MPa only with a small reduction in the load carrying capacity, which greatly met the fatigue criteria of Chinese bridge design standards in terms of the crack width in UHPFRC. Based on the numerical and experimental investigations, the design safety of applying the UHPFRC deck was verified for the Malukou Bridge. |
abstractGer |
This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the deck under service loads, and then two kinds of steel bar reinforced UHPFRC decks with different steel fibers (i.e., hooked-end and straight steel fibers) were fabricated and tested to verify the design safety. Compared with traditional 280 mm-thick ordinary concrete decks, due to the high tensile strength (over 10 MPa) of the UHPFRC in this study, the deck thickness could be reduced to 170 mm with a maximum calculated tensile stress in the deck of 8.82 MPa induced by local wheel loads. Subsequently, the weight of the deck could be reduced by 35% due to the significant reduction in the deck thickness, leading to a smaller compressive stress (13.3 MPa) in the deck under service loads. In addition, in contrast to straight steel fibers, the use of hooked-end steel fibers could had a better advantage to increase in the crack resistance and post-cracking stiffness of the deck specimens. Due to the use of steel fibers and steel bars, cracks in the UHPFRC deck specimens propagated rather slowly under both static and fatigue loads. The deck specimens with hooked-end and straight steel fibers showed superior allowable tensile stresses of 23.2 MPa and 16.1 MPa, respectively, both satisfying the design requirement (8.82 MPa) of the bridge under service loads. The fatigue life of the former deck specimen was revealed as 9 million cycles under the stress range of 1.3–7.0 MPa only with a small reduction in the load carrying capacity, which greatly met the fatigue criteria of Chinese bridge design standards in terms of the crack width in UHPFRC. Based on the numerical and experimental investigations, the design safety of applying the UHPFRC deck was verified for the Malukou Bridge. |
abstract_unstemmed |
This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the deck under service loads, and then two kinds of steel bar reinforced UHPFRC decks with different steel fibers (i.e., hooked-end and straight steel fibers) were fabricated and tested to verify the design safety. Compared with traditional 280 mm-thick ordinary concrete decks, due to the high tensile strength (over 10 MPa) of the UHPFRC in this study, the deck thickness could be reduced to 170 mm with a maximum calculated tensile stress in the deck of 8.82 MPa induced by local wheel loads. Subsequently, the weight of the deck could be reduced by 35% due to the significant reduction in the deck thickness, leading to a smaller compressive stress (13.3 MPa) in the deck under service loads. In addition, in contrast to straight steel fibers, the use of hooked-end steel fibers could had a better advantage to increase in the crack resistance and post-cracking stiffness of the deck specimens. Due to the use of steel fibers and steel bars, cracks in the UHPFRC deck specimens propagated rather slowly under both static and fatigue loads. The deck specimens with hooked-end and straight steel fibers showed superior allowable tensile stresses of 23.2 MPa and 16.1 MPa, respectively, both satisfying the design requirement (8.82 MPa) of the bridge under service loads. The fatigue life of the former deck specimen was revealed as 9 million cycles under the stress range of 1.3–7.0 MPa only with a small reduction in the load carrying capacity, which greatly met the fatigue criteria of Chinese bridge design standards in terms of the crack width in UHPFRC. Based on the numerical and experimental investigations, the design safety of applying the UHPFRC deck was verified for the Malukou Bridge. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs |
remote_bool |
true |
author2 |
Shao, Xudong Cao, Junhui Zhao, Xudong Qiu, Minghong |
author2Str |
Shao, Xudong Cao, Junhui Zhao, Xudong Qiu, Minghong |
ppnlink |
320423344 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.engstruct.2020.111728 |
up_date |
2024-07-06T18:08:57.647Z |
_version_ |
1803854112515686400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005491274</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143342.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engstruct.2020.111728</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005491274</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-0296(20)34329-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the static and fatigue flexural performance of ultra-high performance fiber reinforced concrete (UHPFRC) decks on the basis of a 500 m cable-stayed bridge, namely, the Malukou Bridge. A series of numerical studies was conducted on the bridge to reveal the stress level in the deck under service loads, and then two kinds of steel bar reinforced UHPFRC decks with different steel fibers (i.e., hooked-end and straight steel fibers) were fabricated and tested to verify the design safety. Compared with traditional 280 mm-thick ordinary concrete decks, due to the high tensile strength (over 10 MPa) of the UHPFRC in this study, the deck thickness could be reduced to 170 mm with a maximum calculated tensile stress in the deck of 8.82 MPa induced by local wheel loads. Subsequently, the weight of the deck could be reduced by 35% due to the significant reduction in the deck thickness, leading to a smaller compressive stress (13.3 MPa) in the deck under service loads. In addition, in contrast to straight steel fibers, the use of hooked-end steel fibers could had a better advantage to increase in the crack resistance and post-cracking stiffness of the deck specimens. Due to the use of steel fibers and steel bars, cracks in the UHPFRC deck specimens propagated rather slowly under both static and fatigue loads. The deck specimens with hooked-end and straight steel fibers showed superior allowable tensile stresses of 23.2 MPa and 16.1 MPa, respectively, both satisfying the design requirement (8.82 MPa) of the bridge under service loads. The fatigue life of the former deck specimen was revealed as 9 million cycles under the stress range of 1.3–7.0 MPa only with a small reduction in the load carrying capacity, which greatly met the fatigue criteria of Chinese bridge design standards in terms of the crack width in UHPFRC. Based on the numerical and experimental investigations, the design safety of applying the UHPFRC deck was verified for the Malukou Bridge.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultra-high performance fiber reinforced concrete (UHPFRC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composite girder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexural performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack width</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Xudong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Junhui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Xudong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5690-6974</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Minghong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7803-7124</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">231</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423344</subfield><subfield code="w">(DE-600)2002833-7</subfield><subfield code="w">(DE-576)259271195</subfield><subfield code="x">0141-0296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.38</subfield><subfield code="j">Seismologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield></datafield></record></collection>
|
score |
7.401388 |