Solar heat pump configurations for water heating system in China
The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electri...
Ausführliche Beschreibung
Autor*in: |
Lu, Jie [verfasserIn] Tang, Yitian [verfasserIn] Li, Zhiyuan [verfasserIn] He, Guoqing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied thermal engineering - Amsterdam [u.a.] : Elsevier Science, 1996, 187 |
---|---|
Übergeordnetes Werk: |
volume:187 |
DOI / URN: |
10.1016/j.applthermaleng.2021.116570 |
---|
Katalog-ID: |
ELV005551749 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005551749 | ||
003 | DE-627 | ||
005 | 20230524135249.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.applthermaleng.2021.116570 |2 doi | |
035 | |a (DE-627)ELV005551749 | ||
035 | |a (ELSEVIER)S1359-4311(21)00027-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Lu, Jie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Solar heat pump configurations for water heating system in China |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electrical work of water-source heat pump (WSHP) to collect more solar energy. To address this issue, this study compared the seasonal energy performance between a serial SAHP system and its parallel counterpart for space heating applications in 39 cities across China using a validated TRNSYS model. The results show that the parallel system performs better than the serial system in general if an air-source heat pump (ASHP) is the auxiliary source. It is otherwise when electrical heating is the auxiliary source. Higher solar radiation and warmer climates favour the parallel configuration while a more efficient WSHP favours the serial configuration. In the Tibet plateau with high solar radiation, the parallel system can achieve twice the efficiency of the serial system. At a supply temperature of 45 °C in Shanghai, the serial system starts to outperform the parallel system if the WSHP can achieve a rated coefficient of performance greater than 6.9. Higher supply temperatures also favour the serial configuration. It is recommended that the SAHP takes the form of a parallel configuration when an efficient auxiliary source, such as ASHP, is available. However, in the severe cold regions, the serial system can be a better choice if an efficient WSHP system is available and the starting temperature is optimized. | ||
650 | 4 | |a Solar-assisted heat pump | |
650 | 4 | |a Parallel configuration | |
650 | 4 | |a Serial configuration | |
650 | 4 | |a Air-source heat pump | |
650 | 4 | |a Space heating | |
700 | 1 | |a Tang, Yitian |e verfasserin |4 aut | |
700 | 1 | |a Li, Zhiyuan |e verfasserin |4 aut | |
700 | 1 | |a He, Guoqing |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied thermal engineering |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 187 |h Online-Ressource |w (DE-627)320594122 |w (DE-600)2019322-1 |w (DE-576)256146322 |x 1359-4311 |7 nnns |
773 | 1 | 8 | |g volume:187 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.43 |j Kältetechnik |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 187 |
author_variant |
j l jl y t yt z l zl g h gh |
---|---|
matchkey_str |
article:13594311:2021----::oahapmcniuainfraeha |
hierarchy_sort_str |
2021 |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2021 |
allfields |
10.1016/j.applthermaleng.2021.116570 doi (DE-627)ELV005551749 (ELSEVIER)S1359-4311(21)00027-2 DE-627 ger DE-627 rda eng 690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Lu, Jie verfasserin aut Solar heat pump configurations for water heating system in China 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electrical work of water-source heat pump (WSHP) to collect more solar energy. To address this issue, this study compared the seasonal energy performance between a serial SAHP system and its parallel counterpart for space heating applications in 39 cities across China using a validated TRNSYS model. The results show that the parallel system performs better than the serial system in general if an air-source heat pump (ASHP) is the auxiliary source. It is otherwise when electrical heating is the auxiliary source. Higher solar radiation and warmer climates favour the parallel configuration while a more efficient WSHP favours the serial configuration. In the Tibet plateau with high solar radiation, the parallel system can achieve twice the efficiency of the serial system. At a supply temperature of 45 °C in Shanghai, the serial system starts to outperform the parallel system if the WSHP can achieve a rated coefficient of performance greater than 6.9. Higher supply temperatures also favour the serial configuration. It is recommended that the SAHP takes the form of a parallel configuration when an efficient auxiliary source, such as ASHP, is available. However, in the severe cold regions, the serial system can be a better choice if an efficient WSHP system is available and the starting temperature is optimized. Solar-assisted heat pump Parallel configuration Serial configuration Air-source heat pump Space heating Tang, Yitian verfasserin aut Li, Zhiyuan verfasserin aut He, Guoqing verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 187 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 52.52 Thermische Energieerzeugung Wärmetechnik 52.42 Heizungstechnik Lüftungstechnik Klimatechnik 50.38 Technische Thermodynamik AR 187 |
spelling |
10.1016/j.applthermaleng.2021.116570 doi (DE-627)ELV005551749 (ELSEVIER)S1359-4311(21)00027-2 DE-627 ger DE-627 rda eng 690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Lu, Jie verfasserin aut Solar heat pump configurations for water heating system in China 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electrical work of water-source heat pump (WSHP) to collect more solar energy. To address this issue, this study compared the seasonal energy performance between a serial SAHP system and its parallel counterpart for space heating applications in 39 cities across China using a validated TRNSYS model. The results show that the parallel system performs better than the serial system in general if an air-source heat pump (ASHP) is the auxiliary source. It is otherwise when electrical heating is the auxiliary source. Higher solar radiation and warmer climates favour the parallel configuration while a more efficient WSHP favours the serial configuration. In the Tibet plateau with high solar radiation, the parallel system can achieve twice the efficiency of the serial system. At a supply temperature of 45 °C in Shanghai, the serial system starts to outperform the parallel system if the WSHP can achieve a rated coefficient of performance greater than 6.9. Higher supply temperatures also favour the serial configuration. It is recommended that the SAHP takes the form of a parallel configuration when an efficient auxiliary source, such as ASHP, is available. However, in the severe cold regions, the serial system can be a better choice if an efficient WSHP system is available and the starting temperature is optimized. Solar-assisted heat pump Parallel configuration Serial configuration Air-source heat pump Space heating Tang, Yitian verfasserin aut Li, Zhiyuan verfasserin aut He, Guoqing verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 187 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 52.52 Thermische Energieerzeugung Wärmetechnik 52.42 Heizungstechnik Lüftungstechnik Klimatechnik 50.38 Technische Thermodynamik AR 187 |
allfields_unstemmed |
10.1016/j.applthermaleng.2021.116570 doi (DE-627)ELV005551749 (ELSEVIER)S1359-4311(21)00027-2 DE-627 ger DE-627 rda eng 690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Lu, Jie verfasserin aut Solar heat pump configurations for water heating system in China 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electrical work of water-source heat pump (WSHP) to collect more solar energy. To address this issue, this study compared the seasonal energy performance between a serial SAHP system and its parallel counterpart for space heating applications in 39 cities across China using a validated TRNSYS model. The results show that the parallel system performs better than the serial system in general if an air-source heat pump (ASHP) is the auxiliary source. It is otherwise when electrical heating is the auxiliary source. Higher solar radiation and warmer climates favour the parallel configuration while a more efficient WSHP favours the serial configuration. In the Tibet plateau with high solar radiation, the parallel system can achieve twice the efficiency of the serial system. At a supply temperature of 45 °C in Shanghai, the serial system starts to outperform the parallel system if the WSHP can achieve a rated coefficient of performance greater than 6.9. Higher supply temperatures also favour the serial configuration. It is recommended that the SAHP takes the form of a parallel configuration when an efficient auxiliary source, such as ASHP, is available. However, in the severe cold regions, the serial system can be a better choice if an efficient WSHP system is available and the starting temperature is optimized. Solar-assisted heat pump Parallel configuration Serial configuration Air-source heat pump Space heating Tang, Yitian verfasserin aut Li, Zhiyuan verfasserin aut He, Guoqing verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 187 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 52.52 Thermische Energieerzeugung Wärmetechnik 52.42 Heizungstechnik Lüftungstechnik Klimatechnik 50.38 Technische Thermodynamik AR 187 |
allfieldsGer |
10.1016/j.applthermaleng.2021.116570 doi (DE-627)ELV005551749 (ELSEVIER)S1359-4311(21)00027-2 DE-627 ger DE-627 rda eng 690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Lu, Jie verfasserin aut Solar heat pump configurations for water heating system in China 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electrical work of water-source heat pump (WSHP) to collect more solar energy. To address this issue, this study compared the seasonal energy performance between a serial SAHP system and its parallel counterpart for space heating applications in 39 cities across China using a validated TRNSYS model. The results show that the parallel system performs better than the serial system in general if an air-source heat pump (ASHP) is the auxiliary source. It is otherwise when electrical heating is the auxiliary source. Higher solar radiation and warmer climates favour the parallel configuration while a more efficient WSHP favours the serial configuration. In the Tibet plateau with high solar radiation, the parallel system can achieve twice the efficiency of the serial system. At a supply temperature of 45 °C in Shanghai, the serial system starts to outperform the parallel system if the WSHP can achieve a rated coefficient of performance greater than 6.9. Higher supply temperatures also favour the serial configuration. It is recommended that the SAHP takes the form of a parallel configuration when an efficient auxiliary source, such as ASHP, is available. However, in the severe cold regions, the serial system can be a better choice if an efficient WSHP system is available and the starting temperature is optimized. Solar-assisted heat pump Parallel configuration Serial configuration Air-source heat pump Space heating Tang, Yitian verfasserin aut Li, Zhiyuan verfasserin aut He, Guoqing verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 187 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 52.52 Thermische Energieerzeugung Wärmetechnik 52.42 Heizungstechnik Lüftungstechnik Klimatechnik 50.38 Technische Thermodynamik AR 187 |
allfieldsSound |
10.1016/j.applthermaleng.2021.116570 doi (DE-627)ELV005551749 (ELSEVIER)S1359-4311(21)00027-2 DE-627 ger DE-627 rda eng 690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Lu, Jie verfasserin aut Solar heat pump configurations for water heating system in China 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electrical work of water-source heat pump (WSHP) to collect more solar energy. To address this issue, this study compared the seasonal energy performance between a serial SAHP system and its parallel counterpart for space heating applications in 39 cities across China using a validated TRNSYS model. The results show that the parallel system performs better than the serial system in general if an air-source heat pump (ASHP) is the auxiliary source. It is otherwise when electrical heating is the auxiliary source. Higher solar radiation and warmer climates favour the parallel configuration while a more efficient WSHP favours the serial configuration. In the Tibet plateau with high solar radiation, the parallel system can achieve twice the efficiency of the serial system. At a supply temperature of 45 °C in Shanghai, the serial system starts to outperform the parallel system if the WSHP can achieve a rated coefficient of performance greater than 6.9. Higher supply temperatures also favour the serial configuration. It is recommended that the SAHP takes the form of a parallel configuration when an efficient auxiliary source, such as ASHP, is available. However, in the severe cold regions, the serial system can be a better choice if an efficient WSHP system is available and the starting temperature is optimized. Solar-assisted heat pump Parallel configuration Serial configuration Air-source heat pump Space heating Tang, Yitian verfasserin aut Li, Zhiyuan verfasserin aut He, Guoqing verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 187 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:187 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 52.52 Thermische Energieerzeugung Wärmetechnik 52.42 Heizungstechnik Lüftungstechnik Klimatechnik 50.38 Technische Thermodynamik AR 187 |
language |
English |
source |
Enthalten in Applied thermal engineering 187 volume:187 |
sourceStr |
Enthalten in Applied thermal engineering 187 volume:187 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Solar-assisted heat pump Parallel configuration Serial configuration Air-source heat pump Space heating |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Applied thermal engineering |
authorswithroles_txt_mv |
Lu, Jie @@aut@@ Tang, Yitian @@aut@@ Li, Zhiyuan @@aut@@ He, Guoqing @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320594122 |
dewey-sort |
3690 |
id |
ELV005551749 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005551749</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524135249.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2021.116570</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005551749</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(21)00027-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solar heat pump configurations for water heating system in China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electrical work of water-source heat pump (WSHP) to collect more solar energy. To address this issue, this study compared the seasonal energy performance between a serial SAHP system and its parallel counterpart for space heating applications in 39 cities across China using a validated TRNSYS model. The results show that the parallel system performs better than the serial system in general if an air-source heat pump (ASHP) is the auxiliary source. It is otherwise when electrical heating is the auxiliary source. Higher solar radiation and warmer climates favour the parallel configuration while a more efficient WSHP favours the serial configuration. In the Tibet plateau with high solar radiation, the parallel system can achieve twice the efficiency of the serial system. At a supply temperature of 45 °C in Shanghai, the serial system starts to outperform the parallel system if the WSHP can achieve a rated coefficient of performance greater than 6.9. Higher supply temperatures also favour the serial configuration. It is recommended that the SAHP takes the form of a parallel configuration when an efficient auxiliary source, such as ASHP, is available. However, in the severe cold regions, the serial system can be a better choice if an efficient WSHP system is available and the starting temperature is optimized.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar-assisted heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Serial configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air-source heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space heating</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Yitian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Guoqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">187</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">187</subfield></datafield></record></collection>
|
author |
Lu, Jie |
spellingShingle |
Lu, Jie ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Solar-assisted heat pump misc Parallel configuration misc Serial configuration misc Air-source heat pump misc Space heating Solar heat pump configurations for water heating system in China |
authorStr |
Lu, Jie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320594122 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1359-4311 |
topic_title |
690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Solar heat pump configurations for water heating system in China Solar-assisted heat pump Parallel configuration Serial configuration Air-source heat pump Space heating |
topic |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Solar-assisted heat pump misc Parallel configuration misc Serial configuration misc Air-source heat pump misc Space heating |
topic_unstemmed |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Solar-assisted heat pump misc Parallel configuration misc Serial configuration misc Air-source heat pump misc Space heating |
topic_browse |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Solar-assisted heat pump misc Parallel configuration misc Serial configuration misc Air-source heat pump misc Space heating |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied thermal engineering |
hierarchy_parent_id |
320594122 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Applied thermal engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 |
title |
Solar heat pump configurations for water heating system in China |
ctrlnum |
(DE-627)ELV005551749 (ELSEVIER)S1359-4311(21)00027-2 |
title_full |
Solar heat pump configurations for water heating system in China |
author_sort |
Lu, Jie |
journal |
Applied thermal engineering |
journalStr |
Applied thermal engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Lu, Jie Tang, Yitian Li, Zhiyuan He, Guoqing |
container_volume |
187 |
class |
690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Lu, Jie |
doi_str_mv |
10.1016/j.applthermaleng.2021.116570 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
solar heat pump configurations for water heating system in china |
title_auth |
Solar heat pump configurations for water heating system in China |
abstract |
The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electrical work of water-source heat pump (WSHP) to collect more solar energy. To address this issue, this study compared the seasonal energy performance between a serial SAHP system and its parallel counterpart for space heating applications in 39 cities across China using a validated TRNSYS model. The results show that the parallel system performs better than the serial system in general if an air-source heat pump (ASHP) is the auxiliary source. It is otherwise when electrical heating is the auxiliary source. Higher solar radiation and warmer climates favour the parallel configuration while a more efficient WSHP favours the serial configuration. In the Tibet plateau with high solar radiation, the parallel system can achieve twice the efficiency of the serial system. At a supply temperature of 45 °C in Shanghai, the serial system starts to outperform the parallel system if the WSHP can achieve a rated coefficient of performance greater than 6.9. Higher supply temperatures also favour the serial configuration. It is recommended that the SAHP takes the form of a parallel configuration when an efficient auxiliary source, such as ASHP, is available. However, in the severe cold regions, the serial system can be a better choice if an efficient WSHP system is available and the starting temperature is optimized. |
abstractGer |
The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electrical work of water-source heat pump (WSHP) to collect more solar energy. To address this issue, this study compared the seasonal energy performance between a serial SAHP system and its parallel counterpart for space heating applications in 39 cities across China using a validated TRNSYS model. The results show that the parallel system performs better than the serial system in general if an air-source heat pump (ASHP) is the auxiliary source. It is otherwise when electrical heating is the auxiliary source. Higher solar radiation and warmer climates favour the parallel configuration while a more efficient WSHP favours the serial configuration. In the Tibet plateau with high solar radiation, the parallel system can achieve twice the efficiency of the serial system. At a supply temperature of 45 °C in Shanghai, the serial system starts to outperform the parallel system if the WSHP can achieve a rated coefficient of performance greater than 6.9. Higher supply temperatures also favour the serial configuration. It is recommended that the SAHP takes the form of a parallel configuration when an efficient auxiliary source, such as ASHP, is available. However, in the severe cold regions, the serial system can be a better choice if an efficient WSHP system is available and the starting temperature is optimized. |
abstract_unstemmed |
The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electrical work of water-source heat pump (WSHP) to collect more solar energy. To address this issue, this study compared the seasonal energy performance between a serial SAHP system and its parallel counterpart for space heating applications in 39 cities across China using a validated TRNSYS model. The results show that the parallel system performs better than the serial system in general if an air-source heat pump (ASHP) is the auxiliary source. It is otherwise when electrical heating is the auxiliary source. Higher solar radiation and warmer climates favour the parallel configuration while a more efficient WSHP favours the serial configuration. In the Tibet plateau with high solar radiation, the parallel system can achieve twice the efficiency of the serial system. At a supply temperature of 45 °C in Shanghai, the serial system starts to outperform the parallel system if the WSHP can achieve a rated coefficient of performance greater than 6.9. Higher supply temperatures also favour the serial configuration. It is recommended that the SAHP takes the form of a parallel configuration when an efficient auxiliary source, such as ASHP, is available. However, in the severe cold regions, the serial system can be a better choice if an efficient WSHP system is available and the starting temperature is optimized. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Solar heat pump configurations for water heating system in China |
remote_bool |
true |
author2 |
Tang, Yitian Li, Zhiyuan He, Guoqing |
author2Str |
Tang, Yitian Li, Zhiyuan He, Guoqing |
ppnlink |
320594122 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.applthermaleng.2021.116570 |
up_date |
2024-07-06T18:21:16.973Z |
_version_ |
1803854887754137600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005551749</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524135249.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2021.116570</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005551749</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(21)00027-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solar heat pump configurations for water heating system in China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The solar-assisted heat pump (SAHP) water heating system has a high potential to minimize the fossil fuel consumption in space heating. Among its various configurations, the serial configuration of solar energy and heat pump remains to be examined systematically as to whether it is worth the electrical work of water-source heat pump (WSHP) to collect more solar energy. To address this issue, this study compared the seasonal energy performance between a serial SAHP system and its parallel counterpart for space heating applications in 39 cities across China using a validated TRNSYS model. The results show that the parallel system performs better than the serial system in general if an air-source heat pump (ASHP) is the auxiliary source. It is otherwise when electrical heating is the auxiliary source. Higher solar radiation and warmer climates favour the parallel configuration while a more efficient WSHP favours the serial configuration. In the Tibet plateau with high solar radiation, the parallel system can achieve twice the efficiency of the serial system. At a supply temperature of 45 °C in Shanghai, the serial system starts to outperform the parallel system if the WSHP can achieve a rated coefficient of performance greater than 6.9. Higher supply temperatures also favour the serial configuration. It is recommended that the SAHP takes the form of a parallel configuration when an efficient auxiliary source, such as ASHP, is available. However, in the severe cold regions, the serial system can be a better choice if an efficient WSHP system is available and the starting temperature is optimized.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar-assisted heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Serial configuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air-source heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space heating</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Yitian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Guoqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">187</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">187</subfield></datafield></record></collection>
|
score |
7.399267 |