A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification
UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0....
Ausführliche Beschreibung
Autor*in: |
Mu, Tianwei [verfasserIn] Zhang, Yueyang [verfasserIn] Shi, Wei [verfasserIn] Chen, Gang [verfasserIn] Liu, Yanbiao [verfasserIn] Huang, Manhong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chemosphere - Amsterdam [u.a.] : Elsevier Science, 1972, 269 |
---|---|
Übergeordnetes Werk: |
volume:269 |
DOI / URN: |
10.1016/j.chemosphere.2020.128686 |
---|
Katalog-ID: |
ELV005561892 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005561892 | ||
003 | DE-627 | ||
005 | 20230524123201.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chemosphere.2020.128686 |2 doi | |
035 | |a (DE-627)ELV005561892 | ||
035 | |a (ELSEVIER)S0045-6535(20)32884-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |q DE-600 |
084 | |a 43.00 |2 bkl | ||
100 | 1 | |a Mu, Tianwei |e verfasserin |4 aut | |
245 | 1 | 0 | |a A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0.5 wt% of UiO-66 particles was used to treat antibiotic wastewater by a forward-osmosis process, the water flux reached 50.78 LMH (L·m−2·h−1), an increase of 46% compared with the membrane without UiO-66 particles. The rejections of six types of antibiotics improved to over 99.94%. Even trimethoprims rejection rate enhanced to 100% because antibiotics exposed on the surface of the UiO-66 nanoparticles. The forward osmosis model could explain the mechanism of permeation, and predict water flux and rejection. Thus, a novel mathematical model with Gaussian pore distribution and different potential functions was proposed to process multiple-solute transportation and rejection on the charged surface of the membrane. The rejection of six antibiotics was predicted by the iteration algorithm, and the errors of water flux, salt flux, and rejection rates were less than 1.3 LMH, 0.2 gMH (g·m−2 h−1), and 1.7% between the predictions and the experiments, respectively. The accuracy of the proposed model was higher than the model published before. Therefore, the experimental results and the theoretical model provide a significant insight into the synthesis thin-film composite membranes and application of water purification. | ||
650 | 4 | |a Forward osmosis | |
650 | 4 | |a Electrospinning nanofiber | |
650 | 4 | |a Metal-organic frameworks | |
650 | 4 | |a Antibiotic wastewater | |
650 | 4 | |a Multiple solutes forward-osmosis model | |
700 | 1 | |a Zhang, Yueyang |e verfasserin |4 aut | |
700 | 1 | |a Shi, Wei |e verfasserin |4 aut | |
700 | 1 | |a Chen, Gang |e verfasserin |4 aut | |
700 | 1 | |a Liu, Yanbiao |e verfasserin |4 aut | |
700 | 1 | |a Huang, Manhong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemosphere |d Amsterdam [u.a.] : Elsevier Science, 1972 |g 269 |h Online-Ressource |w (DE-627)306354217 |w (DE-600)1496851-4 |w (DE-576)081952961 |x 1879-1298 |7 nnns |
773 | 1 | 8 | |g volume:269 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 43.00 |j Umweltforschung |j Umweltschutz: Allgemeines |
951 | |a AR | ||
952 | |d 269 |
author_variant |
t m tm y z yz w s ws g c gc y l yl m h mh |
---|---|
matchkey_str |
article:18791298:2020----::nvli6pfopstmmrnfrhrjcinfutpeniitcnmrcliu |
hierarchy_sort_str |
2020 |
bklnumber |
43.00 |
publishDate |
2020 |
allfields |
10.1016/j.chemosphere.2020.128686 doi (DE-627)ELV005561892 (ELSEVIER)S0045-6535(20)32884-8 DE-627 ger DE-627 rda eng 333.7 DE-600 43.00 bkl Mu, Tianwei verfasserin aut A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0.5 wt% of UiO-66 particles was used to treat antibiotic wastewater by a forward-osmosis process, the water flux reached 50.78 LMH (L·m−2·h−1), an increase of 46% compared with the membrane without UiO-66 particles. The rejections of six types of antibiotics improved to over 99.94%. Even trimethoprims rejection rate enhanced to 100% because antibiotics exposed on the surface of the UiO-66 nanoparticles. The forward osmosis model could explain the mechanism of permeation, and predict water flux and rejection. Thus, a novel mathematical model with Gaussian pore distribution and different potential functions was proposed to process multiple-solute transportation and rejection on the charged surface of the membrane. The rejection of six antibiotics was predicted by the iteration algorithm, and the errors of water flux, salt flux, and rejection rates were less than 1.3 LMH, 0.2 gMH (g·m−2 h−1), and 1.7% between the predictions and the experiments, respectively. The accuracy of the proposed model was higher than the model published before. Therefore, the experimental results and the theoretical model provide a significant insight into the synthesis thin-film composite membranes and application of water purification. Forward osmosis Electrospinning nanofiber Metal-organic frameworks Antibiotic wastewater Multiple solutes forward-osmosis model Zhang, Yueyang verfasserin aut Shi, Wei verfasserin aut Chen, Gang verfasserin aut Liu, Yanbiao verfasserin aut Huang, Manhong verfasserin aut Enthalten in Chemosphere Amsterdam [u.a.] : Elsevier Science, 1972 269 Online-Ressource (DE-627)306354217 (DE-600)1496851-4 (DE-576)081952961 1879-1298 nnns volume:269 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.00 Umweltforschung Umweltschutz: Allgemeines AR 269 |
spelling |
10.1016/j.chemosphere.2020.128686 doi (DE-627)ELV005561892 (ELSEVIER)S0045-6535(20)32884-8 DE-627 ger DE-627 rda eng 333.7 DE-600 43.00 bkl Mu, Tianwei verfasserin aut A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0.5 wt% of UiO-66 particles was used to treat antibiotic wastewater by a forward-osmosis process, the water flux reached 50.78 LMH (L·m−2·h−1), an increase of 46% compared with the membrane without UiO-66 particles. The rejections of six types of antibiotics improved to over 99.94%. Even trimethoprims rejection rate enhanced to 100% because antibiotics exposed on the surface of the UiO-66 nanoparticles. The forward osmosis model could explain the mechanism of permeation, and predict water flux and rejection. Thus, a novel mathematical model with Gaussian pore distribution and different potential functions was proposed to process multiple-solute transportation and rejection on the charged surface of the membrane. The rejection of six antibiotics was predicted by the iteration algorithm, and the errors of water flux, salt flux, and rejection rates were less than 1.3 LMH, 0.2 gMH (g·m−2 h−1), and 1.7% between the predictions and the experiments, respectively. The accuracy of the proposed model was higher than the model published before. Therefore, the experimental results and the theoretical model provide a significant insight into the synthesis thin-film composite membranes and application of water purification. Forward osmosis Electrospinning nanofiber Metal-organic frameworks Antibiotic wastewater Multiple solutes forward-osmosis model Zhang, Yueyang verfasserin aut Shi, Wei verfasserin aut Chen, Gang verfasserin aut Liu, Yanbiao verfasserin aut Huang, Manhong verfasserin aut Enthalten in Chemosphere Amsterdam [u.a.] : Elsevier Science, 1972 269 Online-Ressource (DE-627)306354217 (DE-600)1496851-4 (DE-576)081952961 1879-1298 nnns volume:269 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.00 Umweltforschung Umweltschutz: Allgemeines AR 269 |
allfields_unstemmed |
10.1016/j.chemosphere.2020.128686 doi (DE-627)ELV005561892 (ELSEVIER)S0045-6535(20)32884-8 DE-627 ger DE-627 rda eng 333.7 DE-600 43.00 bkl Mu, Tianwei verfasserin aut A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0.5 wt% of UiO-66 particles was used to treat antibiotic wastewater by a forward-osmosis process, the water flux reached 50.78 LMH (L·m−2·h−1), an increase of 46% compared with the membrane without UiO-66 particles. The rejections of six types of antibiotics improved to over 99.94%. Even trimethoprims rejection rate enhanced to 100% because antibiotics exposed on the surface of the UiO-66 nanoparticles. The forward osmosis model could explain the mechanism of permeation, and predict water flux and rejection. Thus, a novel mathematical model with Gaussian pore distribution and different potential functions was proposed to process multiple-solute transportation and rejection on the charged surface of the membrane. The rejection of six antibiotics was predicted by the iteration algorithm, and the errors of water flux, salt flux, and rejection rates were less than 1.3 LMH, 0.2 gMH (g·m−2 h−1), and 1.7% between the predictions and the experiments, respectively. The accuracy of the proposed model was higher than the model published before. Therefore, the experimental results and the theoretical model provide a significant insight into the synthesis thin-film composite membranes and application of water purification. Forward osmosis Electrospinning nanofiber Metal-organic frameworks Antibiotic wastewater Multiple solutes forward-osmosis model Zhang, Yueyang verfasserin aut Shi, Wei verfasserin aut Chen, Gang verfasserin aut Liu, Yanbiao verfasserin aut Huang, Manhong verfasserin aut Enthalten in Chemosphere Amsterdam [u.a.] : Elsevier Science, 1972 269 Online-Ressource (DE-627)306354217 (DE-600)1496851-4 (DE-576)081952961 1879-1298 nnns volume:269 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.00 Umweltforschung Umweltschutz: Allgemeines AR 269 |
allfieldsGer |
10.1016/j.chemosphere.2020.128686 doi (DE-627)ELV005561892 (ELSEVIER)S0045-6535(20)32884-8 DE-627 ger DE-627 rda eng 333.7 DE-600 43.00 bkl Mu, Tianwei verfasserin aut A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0.5 wt% of UiO-66 particles was used to treat antibiotic wastewater by a forward-osmosis process, the water flux reached 50.78 LMH (L·m−2·h−1), an increase of 46% compared with the membrane without UiO-66 particles. The rejections of six types of antibiotics improved to over 99.94%. Even trimethoprims rejection rate enhanced to 100% because antibiotics exposed on the surface of the UiO-66 nanoparticles. The forward osmosis model could explain the mechanism of permeation, and predict water flux and rejection. Thus, a novel mathematical model with Gaussian pore distribution and different potential functions was proposed to process multiple-solute transportation and rejection on the charged surface of the membrane. The rejection of six antibiotics was predicted by the iteration algorithm, and the errors of water flux, salt flux, and rejection rates were less than 1.3 LMH, 0.2 gMH (g·m−2 h−1), and 1.7% between the predictions and the experiments, respectively. The accuracy of the proposed model was higher than the model published before. Therefore, the experimental results and the theoretical model provide a significant insight into the synthesis thin-film composite membranes and application of water purification. Forward osmosis Electrospinning nanofiber Metal-organic frameworks Antibiotic wastewater Multiple solutes forward-osmosis model Zhang, Yueyang verfasserin aut Shi, Wei verfasserin aut Chen, Gang verfasserin aut Liu, Yanbiao verfasserin aut Huang, Manhong verfasserin aut Enthalten in Chemosphere Amsterdam [u.a.] : Elsevier Science, 1972 269 Online-Ressource (DE-627)306354217 (DE-600)1496851-4 (DE-576)081952961 1879-1298 nnns volume:269 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.00 Umweltforschung Umweltschutz: Allgemeines AR 269 |
allfieldsSound |
10.1016/j.chemosphere.2020.128686 doi (DE-627)ELV005561892 (ELSEVIER)S0045-6535(20)32884-8 DE-627 ger DE-627 rda eng 333.7 DE-600 43.00 bkl Mu, Tianwei verfasserin aut A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0.5 wt% of UiO-66 particles was used to treat antibiotic wastewater by a forward-osmosis process, the water flux reached 50.78 LMH (L·m−2·h−1), an increase of 46% compared with the membrane without UiO-66 particles. The rejections of six types of antibiotics improved to over 99.94%. Even trimethoprims rejection rate enhanced to 100% because antibiotics exposed on the surface of the UiO-66 nanoparticles. The forward osmosis model could explain the mechanism of permeation, and predict water flux and rejection. Thus, a novel mathematical model with Gaussian pore distribution and different potential functions was proposed to process multiple-solute transportation and rejection on the charged surface of the membrane. The rejection of six antibiotics was predicted by the iteration algorithm, and the errors of water flux, salt flux, and rejection rates were less than 1.3 LMH, 0.2 gMH (g·m−2 h−1), and 1.7% between the predictions and the experiments, respectively. The accuracy of the proposed model was higher than the model published before. Therefore, the experimental results and the theoretical model provide a significant insight into the synthesis thin-film composite membranes and application of water purification. Forward osmosis Electrospinning nanofiber Metal-organic frameworks Antibiotic wastewater Multiple solutes forward-osmosis model Zhang, Yueyang verfasserin aut Shi, Wei verfasserin aut Chen, Gang verfasserin aut Liu, Yanbiao verfasserin aut Huang, Manhong verfasserin aut Enthalten in Chemosphere Amsterdam [u.a.] : Elsevier Science, 1972 269 Online-Ressource (DE-627)306354217 (DE-600)1496851-4 (DE-576)081952961 1879-1298 nnns volume:269 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.00 Umweltforschung Umweltschutz: Allgemeines AR 269 |
language |
English |
source |
Enthalten in Chemosphere 269 volume:269 |
sourceStr |
Enthalten in Chemosphere 269 volume:269 |
format_phy_str_mv |
Article |
bklname |
Umweltforschung Umweltschutz: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Forward osmosis Electrospinning nanofiber Metal-organic frameworks Antibiotic wastewater Multiple solutes forward-osmosis model |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Chemosphere |
authorswithroles_txt_mv |
Mu, Tianwei @@aut@@ Zhang, Yueyang @@aut@@ Shi, Wei @@aut@@ Chen, Gang @@aut@@ Liu, Yanbiao @@aut@@ Huang, Manhong @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306354217 |
dewey-sort |
3333.7 |
id |
ELV005561892 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005561892</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524123201.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemosphere.2020.128686</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005561892</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-6535(20)32884-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mu, Tianwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0.5 wt% of UiO-66 particles was used to treat antibiotic wastewater by a forward-osmosis process, the water flux reached 50.78 LMH (L·m−2·h−1), an increase of 46% compared with the membrane without UiO-66 particles. The rejections of six types of antibiotics improved to over 99.94%. Even trimethoprims rejection rate enhanced to 100% because antibiotics exposed on the surface of the UiO-66 nanoparticles. The forward osmosis model could explain the mechanism of permeation, and predict water flux and rejection. Thus, a novel mathematical model with Gaussian pore distribution and different potential functions was proposed to process multiple-solute transportation and rejection on the charged surface of the membrane. The rejection of six antibiotics was predicted by the iteration algorithm, and the errors of water flux, salt flux, and rejection rates were less than 1.3 LMH, 0.2 gMH (g·m−2 h−1), and 1.7% between the predictions and the experiments, respectively. The accuracy of the proposed model was higher than the model published before. Therefore, the experimental results and the theoretical model provide a significant insight into the synthesis thin-film composite membranes and application of water purification.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forward osmosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrospinning nanofiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal-organic frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antibiotic wastewater</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple solutes forward-osmosis model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yueyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yanbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Manhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemosphere</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1972</subfield><subfield code="g">269</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306354217</subfield><subfield code="w">(DE-600)1496851-4</subfield><subfield code="w">(DE-576)081952961</subfield><subfield code="x">1879-1298</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:269</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.00</subfield><subfield code="j">Umweltforschung</subfield><subfield code="j">Umweltschutz: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">269</subfield></datafield></record></collection>
|
author |
Mu, Tianwei |
spellingShingle |
Mu, Tianwei ddc 333.7 bkl 43.00 misc Forward osmosis misc Electrospinning nanofiber misc Metal-organic frameworks misc Antibiotic wastewater misc Multiple solutes forward-osmosis model A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification |
authorStr |
Mu, Tianwei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306354217 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-1298 |
topic_title |
333.7 DE-600 43.00 bkl A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification Forward osmosis Electrospinning nanofiber Metal-organic frameworks Antibiotic wastewater Multiple solutes forward-osmosis model |
topic |
ddc 333.7 bkl 43.00 misc Forward osmosis misc Electrospinning nanofiber misc Metal-organic frameworks misc Antibiotic wastewater misc Multiple solutes forward-osmosis model |
topic_unstemmed |
ddc 333.7 bkl 43.00 misc Forward osmosis misc Electrospinning nanofiber misc Metal-organic frameworks misc Antibiotic wastewater misc Multiple solutes forward-osmosis model |
topic_browse |
ddc 333.7 bkl 43.00 misc Forward osmosis misc Electrospinning nanofiber misc Metal-organic frameworks misc Antibiotic wastewater misc Multiple solutes forward-osmosis model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemosphere |
hierarchy_parent_id |
306354217 |
dewey-tens |
330 - Economics |
hierarchy_top_title |
Chemosphere |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306354217 (DE-600)1496851-4 (DE-576)081952961 |
title |
A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification |
ctrlnum |
(DE-627)ELV005561892 (ELSEVIER)S0045-6535(20)32884-8 |
title_full |
A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification |
author_sort |
Mu, Tianwei |
journal |
Chemosphere |
journalStr |
Chemosphere |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Mu, Tianwei Zhang, Yueyang Shi, Wei Chen, Gang Liu, Yanbiao Huang, Manhong |
container_volume |
269 |
class |
333.7 DE-600 43.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Mu, Tianwei |
doi_str_mv |
10.1016/j.chemosphere.2020.128686 |
dewey-full |
333.7 |
author2-role |
verfasserin |
title_sort |
a novel uio-66/psf-composite membrane for the rejection of multiple antibiotics: numerical simulation and experiment verification |
title_auth |
A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification |
abstract |
UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0.5 wt% of UiO-66 particles was used to treat antibiotic wastewater by a forward-osmosis process, the water flux reached 50.78 LMH (L·m−2·h−1), an increase of 46% compared with the membrane without UiO-66 particles. The rejections of six types of antibiotics improved to over 99.94%. Even trimethoprims rejection rate enhanced to 100% because antibiotics exposed on the surface of the UiO-66 nanoparticles. The forward osmosis model could explain the mechanism of permeation, and predict water flux and rejection. Thus, a novel mathematical model with Gaussian pore distribution and different potential functions was proposed to process multiple-solute transportation and rejection on the charged surface of the membrane. The rejection of six antibiotics was predicted by the iteration algorithm, and the errors of water flux, salt flux, and rejection rates were less than 1.3 LMH, 0.2 gMH (g·m−2 h−1), and 1.7% between the predictions and the experiments, respectively. The accuracy of the proposed model was higher than the model published before. Therefore, the experimental results and the theoretical model provide a significant insight into the synthesis thin-film composite membranes and application of water purification. |
abstractGer |
UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0.5 wt% of UiO-66 particles was used to treat antibiotic wastewater by a forward-osmosis process, the water flux reached 50.78 LMH (L·m−2·h−1), an increase of 46% compared with the membrane without UiO-66 particles. The rejections of six types of antibiotics improved to over 99.94%. Even trimethoprims rejection rate enhanced to 100% because antibiotics exposed on the surface of the UiO-66 nanoparticles. The forward osmosis model could explain the mechanism of permeation, and predict water flux and rejection. Thus, a novel mathematical model with Gaussian pore distribution and different potential functions was proposed to process multiple-solute transportation and rejection on the charged surface of the membrane. The rejection of six antibiotics was predicted by the iteration algorithm, and the errors of water flux, salt flux, and rejection rates were less than 1.3 LMH, 0.2 gMH (g·m−2 h−1), and 1.7% between the predictions and the experiments, respectively. The accuracy of the proposed model was higher than the model published before. Therefore, the experimental results and the theoretical model provide a significant insight into the synthesis thin-film composite membranes and application of water purification. |
abstract_unstemmed |
UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0.5 wt% of UiO-66 particles was used to treat antibiotic wastewater by a forward-osmosis process, the water flux reached 50.78 LMH (L·m−2·h−1), an increase of 46% compared with the membrane without UiO-66 particles. The rejections of six types of antibiotics improved to over 99.94%. Even trimethoprims rejection rate enhanced to 100% because antibiotics exposed on the surface of the UiO-66 nanoparticles. The forward osmosis model could explain the mechanism of permeation, and predict water flux and rejection. Thus, a novel mathematical model with Gaussian pore distribution and different potential functions was proposed to process multiple-solute transportation and rejection on the charged surface of the membrane. The rejection of six antibiotics was predicted by the iteration algorithm, and the errors of water flux, salt flux, and rejection rates were less than 1.3 LMH, 0.2 gMH (g·m−2 h−1), and 1.7% between the predictions and the experiments, respectively. The accuracy of the proposed model was higher than the model published before. Therefore, the experimental results and the theoretical model provide a significant insight into the synthesis thin-film composite membranes and application of water purification. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification |
remote_bool |
true |
author2 |
Zhang, Yueyang Shi, Wei Chen, Gang Liu, Yanbiao Huang, Manhong |
author2Str |
Zhang, Yueyang Shi, Wei Chen, Gang Liu, Yanbiao Huang, Manhong |
ppnlink |
306354217 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.chemosphere.2020.128686 |
up_date |
2024-07-06T18:23:26.753Z |
_version_ |
1803855023838330880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005561892</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524123201.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemosphere.2020.128686</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005561892</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-6535(20)32884-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mu, Tianwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical simulation and experiment verification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">UiO-66 nanoparticles were fabricated and applied to the support layer of a novel, thin-film nanocomposite membrane for treatment of wastewater containing antibiotics. The incorporation of the UiO-66 particle structure improved the stability and permeability of the membrane. When the membrane with 0.5 wt% of UiO-66 particles was used to treat antibiotic wastewater by a forward-osmosis process, the water flux reached 50.78 LMH (L·m−2·h−1), an increase of 46% compared with the membrane without UiO-66 particles. The rejections of six types of antibiotics improved to over 99.94%. Even trimethoprims rejection rate enhanced to 100% because antibiotics exposed on the surface of the UiO-66 nanoparticles. The forward osmosis model could explain the mechanism of permeation, and predict water flux and rejection. Thus, a novel mathematical model with Gaussian pore distribution and different potential functions was proposed to process multiple-solute transportation and rejection on the charged surface of the membrane. The rejection of six antibiotics was predicted by the iteration algorithm, and the errors of water flux, salt flux, and rejection rates were less than 1.3 LMH, 0.2 gMH (g·m−2 h−1), and 1.7% between the predictions and the experiments, respectively. The accuracy of the proposed model was higher than the model published before. Therefore, the experimental results and the theoretical model provide a significant insight into the synthesis thin-film composite membranes and application of water purification.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forward osmosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrospinning nanofiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal-organic frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antibiotic wastewater</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple solutes forward-osmosis model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yueyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yanbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Manhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemosphere</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1972</subfield><subfield code="g">269</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306354217</subfield><subfield code="w">(DE-600)1496851-4</subfield><subfield code="w">(DE-576)081952961</subfield><subfield code="x">1879-1298</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:269</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.00</subfield><subfield code="j">Umweltforschung</subfield><subfield code="j">Umweltschutz: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">269</subfield></datafield></record></collection>
|
score |
7.4032135 |