Temperature sensitivity of anaerobic CO
Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the...
Ausführliche Beschreibung
Autor*in: |
Liu, Yue [verfasserIn] Yang, Jisong [verfasserIn] Ning, Kai [verfasserIn] Wang, Andong [verfasserIn] Wang, Qiuxian [verfasserIn] Wang, Xuehong [verfasserIn] Wang, Shuwen [verfasserIn] Lv, Zhenbo [verfasserIn] Zhao, Yajie [verfasserIn] Yu, Junbao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Ecological indicators - Amsterdam [u.a.] : Elsevier Science, 2001, 124 |
---|---|
Übergeordnetes Werk: |
volume:124 |
DOI / URN: |
10.1016/j.ecolind.2021.107409 |
---|
Katalog-ID: |
ELV005599385 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005599385 | ||
003 | DE-627 | ||
005 | 20230524121833.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecolind.2021.107409 |2 doi | |
035 | |a (DE-627)ELV005599385 | ||
035 | |a (ELSEVIER)S1470-160X(21)00074-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 630 |q DE-600 |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Liu, Yue |e verfasserin |4 aut | |
245 | 1 | 0 | |a Temperature sensitivity of anaerobic CO |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the present study, samples of soil at the depths of 0–10 cm, 10–20 cm and 20–30 cm were collected in three typical Phragmites australis marshes, including a freshwater marsh (FPa), a no-tidal salt marsh (NTPa) and a tidal salt marsh (TPa), in the Yellow River estuary. The soil samples were incubated at 10 °C, 20 °C and 30 °C, respectively, to determine the rates of anaerobic CO2 production, Q10 values, and their relations to soil properties. Over 70-d incubation, temperature rise significantly increased the mean rates by 70%–136% (from 10 °C to 20 °C) and 64%–142% (from 20 °C to 30 °C) among the marshes, with the mean Q10 values ranging from 1.61 to 2.66. The rates of CO2 production and Q10 values were significantly affected by wetland type and soil depth. Among marshes, the Q10 of the FPa and NTPa soils was higher than that of the TPa soil (for 0–10 cm and 10–20 cm but for 20–30 cm); along soil depths, the Q10 of the top soil was higher than that of the subsoil (for FPa and NTPa but for TPa). Q10 was affected by total organic carbon (TOC), salinity and pH, and the effects were different with marshes. TOC was a main factor regulating Q10 for the freshwater and the no-tidal salt marshes, while salinity and pH were main factors for the tidal salt marsh. The findings highlight an interactive mechanism of soil property and tidal underlying the response of SOM decomposition to temperature change in estuarine wetlands. | ||
650 | 4 | |a Temperature sensitivity | |
650 | 4 | |a Anaerobic SOM decomposition | |
650 | 4 | |a Soil property | |
650 | 4 | |a Estuarine wetland | |
700 | 1 | |a Yang, Jisong |e verfasserin |4 aut | |
700 | 1 | |a Ning, Kai |e verfasserin |4 aut | |
700 | 1 | |a Wang, Andong |e verfasserin |4 aut | |
700 | 1 | |a Wang, Qiuxian |e verfasserin |4 aut | |
700 | 1 | |a Wang, Xuehong |e verfasserin |4 aut | |
700 | 1 | |a Wang, Shuwen |e verfasserin |4 aut | |
700 | 1 | |a Lv, Zhenbo |e verfasserin |4 aut | |
700 | 1 | |a Zhao, Yajie |e verfasserin |4 aut | |
700 | 1 | |a Yu, Junbao |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ecological indicators |d Amsterdam [u.a.] : Elsevier Science, 2001 |g 124 |h Online-Ressource |w (DE-627)338074163 |w (DE-600)2063587-4 |w (DE-576)259272388 |x 1872-7034 |7 nnns |
773 | 1 | 8 | |g volume:124 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 124 |
author_variant |
y l yl j y jy k n kn a w aw q w qw x w xw s w sw z l zl y z yz j y jy |
---|---|
matchkey_str |
article:18727034:2021----::eprtrsniiiyf |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1016/j.ecolind.2021.107409 doi (DE-627)ELV005599385 (ELSEVIER)S1470-160X(21)00074-1 DE-627 ger DE-627 rda eng 570 630 DE-600 BIODIV DE-30 fid Liu, Yue verfasserin aut Temperature sensitivity of anaerobic CO 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the present study, samples of soil at the depths of 0–10 cm, 10–20 cm and 20–30 cm were collected in three typical Phragmites australis marshes, including a freshwater marsh (FPa), a no-tidal salt marsh (NTPa) and a tidal salt marsh (TPa), in the Yellow River estuary. The soil samples were incubated at 10 °C, 20 °C and 30 °C, respectively, to determine the rates of anaerobic CO2 production, Q10 values, and their relations to soil properties. Over 70-d incubation, temperature rise significantly increased the mean rates by 70%–136% (from 10 °C to 20 °C) and 64%–142% (from 20 °C to 30 °C) among the marshes, with the mean Q10 values ranging from 1.61 to 2.66. The rates of CO2 production and Q10 values were significantly affected by wetland type and soil depth. Among marshes, the Q10 of the FPa and NTPa soils was higher than that of the TPa soil (for 0–10 cm and 10–20 cm but for 20–30 cm); along soil depths, the Q10 of the top soil was higher than that of the subsoil (for FPa and NTPa but for TPa). Q10 was affected by total organic carbon (TOC), salinity and pH, and the effects were different with marshes. TOC was a main factor regulating Q10 for the freshwater and the no-tidal salt marshes, while salinity and pH were main factors for the tidal salt marsh. The findings highlight an interactive mechanism of soil property and tidal underlying the response of SOM decomposition to temperature change in estuarine wetlands. Temperature sensitivity Anaerobic SOM decomposition Soil property Estuarine wetland Yang, Jisong verfasserin aut Ning, Kai verfasserin aut Wang, Andong verfasserin aut Wang, Qiuxian verfasserin aut Wang, Xuehong verfasserin aut Wang, Shuwen verfasserin aut Lv, Zhenbo verfasserin aut Zhao, Yajie verfasserin aut Yu, Junbao verfasserin aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 124 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:124 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 124 |
spelling |
10.1016/j.ecolind.2021.107409 doi (DE-627)ELV005599385 (ELSEVIER)S1470-160X(21)00074-1 DE-627 ger DE-627 rda eng 570 630 DE-600 BIODIV DE-30 fid Liu, Yue verfasserin aut Temperature sensitivity of anaerobic CO 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the present study, samples of soil at the depths of 0–10 cm, 10–20 cm and 20–30 cm were collected in three typical Phragmites australis marshes, including a freshwater marsh (FPa), a no-tidal salt marsh (NTPa) and a tidal salt marsh (TPa), in the Yellow River estuary. The soil samples were incubated at 10 °C, 20 °C and 30 °C, respectively, to determine the rates of anaerobic CO2 production, Q10 values, and their relations to soil properties. Over 70-d incubation, temperature rise significantly increased the mean rates by 70%–136% (from 10 °C to 20 °C) and 64%–142% (from 20 °C to 30 °C) among the marshes, with the mean Q10 values ranging from 1.61 to 2.66. The rates of CO2 production and Q10 values were significantly affected by wetland type and soil depth. Among marshes, the Q10 of the FPa and NTPa soils was higher than that of the TPa soil (for 0–10 cm and 10–20 cm but for 20–30 cm); along soil depths, the Q10 of the top soil was higher than that of the subsoil (for FPa and NTPa but for TPa). Q10 was affected by total organic carbon (TOC), salinity and pH, and the effects were different with marshes. TOC was a main factor regulating Q10 for the freshwater and the no-tidal salt marshes, while salinity and pH were main factors for the tidal salt marsh. The findings highlight an interactive mechanism of soil property and tidal underlying the response of SOM decomposition to temperature change in estuarine wetlands. Temperature sensitivity Anaerobic SOM decomposition Soil property Estuarine wetland Yang, Jisong verfasserin aut Ning, Kai verfasserin aut Wang, Andong verfasserin aut Wang, Qiuxian verfasserin aut Wang, Xuehong verfasserin aut Wang, Shuwen verfasserin aut Lv, Zhenbo verfasserin aut Zhao, Yajie verfasserin aut Yu, Junbao verfasserin aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 124 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:124 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 124 |
allfields_unstemmed |
10.1016/j.ecolind.2021.107409 doi (DE-627)ELV005599385 (ELSEVIER)S1470-160X(21)00074-1 DE-627 ger DE-627 rda eng 570 630 DE-600 BIODIV DE-30 fid Liu, Yue verfasserin aut Temperature sensitivity of anaerobic CO 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the present study, samples of soil at the depths of 0–10 cm, 10–20 cm and 20–30 cm were collected in three typical Phragmites australis marshes, including a freshwater marsh (FPa), a no-tidal salt marsh (NTPa) and a tidal salt marsh (TPa), in the Yellow River estuary. The soil samples were incubated at 10 °C, 20 °C and 30 °C, respectively, to determine the rates of anaerobic CO2 production, Q10 values, and their relations to soil properties. Over 70-d incubation, temperature rise significantly increased the mean rates by 70%–136% (from 10 °C to 20 °C) and 64%–142% (from 20 °C to 30 °C) among the marshes, with the mean Q10 values ranging from 1.61 to 2.66. The rates of CO2 production and Q10 values were significantly affected by wetland type and soil depth. Among marshes, the Q10 of the FPa and NTPa soils was higher than that of the TPa soil (for 0–10 cm and 10–20 cm but for 20–30 cm); along soil depths, the Q10 of the top soil was higher than that of the subsoil (for FPa and NTPa but for TPa). Q10 was affected by total organic carbon (TOC), salinity and pH, and the effects were different with marshes. TOC was a main factor regulating Q10 for the freshwater and the no-tidal salt marshes, while salinity and pH were main factors for the tidal salt marsh. The findings highlight an interactive mechanism of soil property and tidal underlying the response of SOM decomposition to temperature change in estuarine wetlands. Temperature sensitivity Anaerobic SOM decomposition Soil property Estuarine wetland Yang, Jisong verfasserin aut Ning, Kai verfasserin aut Wang, Andong verfasserin aut Wang, Qiuxian verfasserin aut Wang, Xuehong verfasserin aut Wang, Shuwen verfasserin aut Lv, Zhenbo verfasserin aut Zhao, Yajie verfasserin aut Yu, Junbao verfasserin aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 124 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:124 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 124 |
allfieldsGer |
10.1016/j.ecolind.2021.107409 doi (DE-627)ELV005599385 (ELSEVIER)S1470-160X(21)00074-1 DE-627 ger DE-627 rda eng 570 630 DE-600 BIODIV DE-30 fid Liu, Yue verfasserin aut Temperature sensitivity of anaerobic CO 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the present study, samples of soil at the depths of 0–10 cm, 10–20 cm and 20–30 cm were collected in three typical Phragmites australis marshes, including a freshwater marsh (FPa), a no-tidal salt marsh (NTPa) and a tidal salt marsh (TPa), in the Yellow River estuary. The soil samples were incubated at 10 °C, 20 °C and 30 °C, respectively, to determine the rates of anaerobic CO2 production, Q10 values, and their relations to soil properties. Over 70-d incubation, temperature rise significantly increased the mean rates by 70%–136% (from 10 °C to 20 °C) and 64%–142% (from 20 °C to 30 °C) among the marshes, with the mean Q10 values ranging from 1.61 to 2.66. The rates of CO2 production and Q10 values were significantly affected by wetland type and soil depth. Among marshes, the Q10 of the FPa and NTPa soils was higher than that of the TPa soil (for 0–10 cm and 10–20 cm but for 20–30 cm); along soil depths, the Q10 of the top soil was higher than that of the subsoil (for FPa and NTPa but for TPa). Q10 was affected by total organic carbon (TOC), salinity and pH, and the effects were different with marshes. TOC was a main factor regulating Q10 for the freshwater and the no-tidal salt marshes, while salinity and pH were main factors for the tidal salt marsh. The findings highlight an interactive mechanism of soil property and tidal underlying the response of SOM decomposition to temperature change in estuarine wetlands. Temperature sensitivity Anaerobic SOM decomposition Soil property Estuarine wetland Yang, Jisong verfasserin aut Ning, Kai verfasserin aut Wang, Andong verfasserin aut Wang, Qiuxian verfasserin aut Wang, Xuehong verfasserin aut Wang, Shuwen verfasserin aut Lv, Zhenbo verfasserin aut Zhao, Yajie verfasserin aut Yu, Junbao verfasserin aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 124 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:124 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 124 |
allfieldsSound |
10.1016/j.ecolind.2021.107409 doi (DE-627)ELV005599385 (ELSEVIER)S1470-160X(21)00074-1 DE-627 ger DE-627 rda eng 570 630 DE-600 BIODIV DE-30 fid Liu, Yue verfasserin aut Temperature sensitivity of anaerobic CO 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the present study, samples of soil at the depths of 0–10 cm, 10–20 cm and 20–30 cm were collected in three typical Phragmites australis marshes, including a freshwater marsh (FPa), a no-tidal salt marsh (NTPa) and a tidal salt marsh (TPa), in the Yellow River estuary. The soil samples were incubated at 10 °C, 20 °C and 30 °C, respectively, to determine the rates of anaerobic CO2 production, Q10 values, and their relations to soil properties. Over 70-d incubation, temperature rise significantly increased the mean rates by 70%–136% (from 10 °C to 20 °C) and 64%–142% (from 20 °C to 30 °C) among the marshes, with the mean Q10 values ranging from 1.61 to 2.66. The rates of CO2 production and Q10 values were significantly affected by wetland type and soil depth. Among marshes, the Q10 of the FPa and NTPa soils was higher than that of the TPa soil (for 0–10 cm and 10–20 cm but for 20–30 cm); along soil depths, the Q10 of the top soil was higher than that of the subsoil (for FPa and NTPa but for TPa). Q10 was affected by total organic carbon (TOC), salinity and pH, and the effects were different with marshes. TOC was a main factor regulating Q10 for the freshwater and the no-tidal salt marshes, while salinity and pH were main factors for the tidal salt marsh. The findings highlight an interactive mechanism of soil property and tidal underlying the response of SOM decomposition to temperature change in estuarine wetlands. Temperature sensitivity Anaerobic SOM decomposition Soil property Estuarine wetland Yang, Jisong verfasserin aut Ning, Kai verfasserin aut Wang, Andong verfasserin aut Wang, Qiuxian verfasserin aut Wang, Xuehong verfasserin aut Wang, Shuwen verfasserin aut Lv, Zhenbo verfasserin aut Zhao, Yajie verfasserin aut Yu, Junbao verfasserin aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 124 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:124 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 124 |
language |
English |
source |
Enthalten in Ecological indicators 124 volume:124 |
sourceStr |
Enthalten in Ecological indicators 124 volume:124 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Temperature sensitivity Anaerobic SOM decomposition Soil property Estuarine wetland |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Ecological indicators |
authorswithroles_txt_mv |
Liu, Yue @@aut@@ Yang, Jisong @@aut@@ Ning, Kai @@aut@@ Wang, Andong @@aut@@ Wang, Qiuxian @@aut@@ Wang, Xuehong @@aut@@ Wang, Shuwen @@aut@@ Lv, Zhenbo @@aut@@ Zhao, Yajie @@aut@@ Yu, Junbao @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
338074163 |
dewey-sort |
3570 |
id |
ELV005599385 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005599385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524121833.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2021.107409</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005599385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1470-160X(21)00074-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">630</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temperature sensitivity of anaerobic CO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the present study, samples of soil at the depths of 0–10 cm, 10–20 cm and 20–30 cm were collected in three typical Phragmites australis marshes, including a freshwater marsh (FPa), a no-tidal salt marsh (NTPa) and a tidal salt marsh (TPa), in the Yellow River estuary. The soil samples were incubated at 10 °C, 20 °C and 30 °C, respectively, to determine the rates of anaerobic CO2 production, Q10 values, and their relations to soil properties. Over 70-d incubation, temperature rise significantly increased the mean rates by 70%–136% (from 10 °C to 20 °C) and 64%–142% (from 20 °C to 30 °C) among the marshes, with the mean Q10 values ranging from 1.61 to 2.66. The rates of CO2 production and Q10 values were significantly affected by wetland type and soil depth. Among marshes, the Q10 of the FPa and NTPa soils was higher than that of the TPa soil (for 0–10 cm and 10–20 cm but for 20–30 cm); along soil depths, the Q10 of the top soil was higher than that of the subsoil (for FPa and NTPa but for TPa). Q10 was affected by total organic carbon (TOC), salinity and pH, and the effects were different with marshes. TOC was a main factor regulating Q10 for the freshwater and the no-tidal salt marshes, while salinity and pH were main factors for the tidal salt marsh. The findings highlight an interactive mechanism of soil property and tidal underlying the response of SOM decomposition to temperature change in estuarine wetlands.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anaerobic SOM decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estuarine wetland</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jisong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ning, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Andong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qiuxian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xuehong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shuwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Zhenbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yajie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Junbao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ecological indicators</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2001</subfield><subfield code="g">124</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="w">(DE-576)259272388</subfield><subfield code="x">1872-7034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield></datafield></record></collection>
|
author |
Liu, Yue |
spellingShingle |
Liu, Yue ddc 570 fid BIODIV misc Temperature sensitivity misc Anaerobic SOM decomposition misc Soil property misc Estuarine wetland Temperature sensitivity of anaerobic CO |
authorStr |
Liu, Yue |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)338074163 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 630 - Agriculture & related technologies |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-7034 |
topic_title |
570 630 DE-600 BIODIV DE-30 fid Temperature sensitivity of anaerobic CO Temperature sensitivity Anaerobic SOM decomposition Soil property Estuarine wetland |
topic |
ddc 570 fid BIODIV misc Temperature sensitivity misc Anaerobic SOM decomposition misc Soil property misc Estuarine wetland |
topic_unstemmed |
ddc 570 fid BIODIV misc Temperature sensitivity misc Anaerobic SOM decomposition misc Soil property misc Estuarine wetland |
topic_browse |
ddc 570 fid BIODIV misc Temperature sensitivity misc Anaerobic SOM decomposition misc Soil property misc Estuarine wetland |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecological indicators |
hierarchy_parent_id |
338074163 |
dewey-tens |
570 - Life sciences; biology 630 - Agriculture |
hierarchy_top_title |
Ecological indicators |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 |
title |
Temperature sensitivity of anaerobic CO |
ctrlnum |
(DE-627)ELV005599385 (ELSEVIER)S1470-160X(21)00074-1 |
title_full |
Temperature sensitivity of anaerobic CO |
author_sort |
Liu, Yue |
journal |
Ecological indicators |
journalStr |
Ecological indicators |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Yue Yang, Jisong Ning, Kai Wang, Andong Wang, Qiuxian Wang, Xuehong Wang, Shuwen Lv, Zhenbo Zhao, Yajie Yu, Junbao |
container_volume |
124 |
class |
570 630 DE-600 BIODIV DE-30 fid |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Yue |
doi_str_mv |
10.1016/j.ecolind.2021.107409 |
dewey-full |
570 630 |
author2-role |
verfasserin |
title_sort |
temperature sensitivity of anaerobic co |
title_auth |
Temperature sensitivity of anaerobic CO |
abstract |
Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the present study, samples of soil at the depths of 0–10 cm, 10–20 cm and 20–30 cm were collected in three typical Phragmites australis marshes, including a freshwater marsh (FPa), a no-tidal salt marsh (NTPa) and a tidal salt marsh (TPa), in the Yellow River estuary. The soil samples were incubated at 10 °C, 20 °C and 30 °C, respectively, to determine the rates of anaerobic CO2 production, Q10 values, and their relations to soil properties. Over 70-d incubation, temperature rise significantly increased the mean rates by 70%–136% (from 10 °C to 20 °C) and 64%–142% (from 20 °C to 30 °C) among the marshes, with the mean Q10 values ranging from 1.61 to 2.66. The rates of CO2 production and Q10 values were significantly affected by wetland type and soil depth. Among marshes, the Q10 of the FPa and NTPa soils was higher than that of the TPa soil (for 0–10 cm and 10–20 cm but for 20–30 cm); along soil depths, the Q10 of the top soil was higher than that of the subsoil (for FPa and NTPa but for TPa). Q10 was affected by total organic carbon (TOC), salinity and pH, and the effects were different with marshes. TOC was a main factor regulating Q10 for the freshwater and the no-tidal salt marshes, while salinity and pH were main factors for the tidal salt marsh. The findings highlight an interactive mechanism of soil property and tidal underlying the response of SOM decomposition to temperature change in estuarine wetlands. |
abstractGer |
Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the present study, samples of soil at the depths of 0–10 cm, 10–20 cm and 20–30 cm were collected in three typical Phragmites australis marshes, including a freshwater marsh (FPa), a no-tidal salt marsh (NTPa) and a tidal salt marsh (TPa), in the Yellow River estuary. The soil samples were incubated at 10 °C, 20 °C and 30 °C, respectively, to determine the rates of anaerobic CO2 production, Q10 values, and their relations to soil properties. Over 70-d incubation, temperature rise significantly increased the mean rates by 70%–136% (from 10 °C to 20 °C) and 64%–142% (from 20 °C to 30 °C) among the marshes, with the mean Q10 values ranging from 1.61 to 2.66. The rates of CO2 production and Q10 values were significantly affected by wetland type and soil depth. Among marshes, the Q10 of the FPa and NTPa soils was higher than that of the TPa soil (for 0–10 cm and 10–20 cm but for 20–30 cm); along soil depths, the Q10 of the top soil was higher than that of the subsoil (for FPa and NTPa but for TPa). Q10 was affected by total organic carbon (TOC), salinity and pH, and the effects were different with marshes. TOC was a main factor regulating Q10 for the freshwater and the no-tidal salt marshes, while salinity and pH were main factors for the tidal salt marsh. The findings highlight an interactive mechanism of soil property and tidal underlying the response of SOM decomposition to temperature change in estuarine wetlands. |
abstract_unstemmed |
Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the present study, samples of soil at the depths of 0–10 cm, 10–20 cm and 20–30 cm were collected in three typical Phragmites australis marshes, including a freshwater marsh (FPa), a no-tidal salt marsh (NTPa) and a tidal salt marsh (TPa), in the Yellow River estuary. The soil samples were incubated at 10 °C, 20 °C and 30 °C, respectively, to determine the rates of anaerobic CO2 production, Q10 values, and their relations to soil properties. Over 70-d incubation, temperature rise significantly increased the mean rates by 70%–136% (from 10 °C to 20 °C) and 64%–142% (from 20 °C to 30 °C) among the marshes, with the mean Q10 values ranging from 1.61 to 2.66. The rates of CO2 production and Q10 values were significantly affected by wetland type and soil depth. Among marshes, the Q10 of the FPa and NTPa soils was higher than that of the TPa soil (for 0–10 cm and 10–20 cm but for 20–30 cm); along soil depths, the Q10 of the top soil was higher than that of the subsoil (for FPa and NTPa but for TPa). Q10 was affected by total organic carbon (TOC), salinity and pH, and the effects were different with marshes. TOC was a main factor regulating Q10 for the freshwater and the no-tidal salt marshes, while salinity and pH were main factors for the tidal salt marsh. The findings highlight an interactive mechanism of soil property and tidal underlying the response of SOM decomposition to temperature change in estuarine wetlands. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Temperature sensitivity of anaerobic CO |
remote_bool |
true |
author2 |
Yang, Jisong Ning, Kai Wang, Andong Wang, Qiuxian Wang, Xuehong Wang, Shuwen Lv, Zhenbo Zhao, Yajie Yu, Junbao |
author2Str |
Yang, Jisong Ning, Kai Wang, Andong Wang, Qiuxian Wang, Xuehong Wang, Shuwen Lv, Zhenbo Zhao, Yajie Yu, Junbao |
ppnlink |
338074163 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecolind.2021.107409 |
up_date |
2024-07-06T18:31:07.742Z |
_version_ |
1803855507220332544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005599385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524121833.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2021.107409</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005599385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1470-160X(21)00074-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">630</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temperature sensitivity of anaerobic CO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Temperature sensitivity (Q10) is important to reveal carbon decomposition responding to climate change. It’s remains limited to understand how Q10 of anaerobic soil organic matter (SOM) decomposition is regulated by soil property in various wetlands with distinct hydrological characteristics. In the present study, samples of soil at the depths of 0–10 cm, 10–20 cm and 20–30 cm were collected in three typical Phragmites australis marshes, including a freshwater marsh (FPa), a no-tidal salt marsh (NTPa) and a tidal salt marsh (TPa), in the Yellow River estuary. The soil samples were incubated at 10 °C, 20 °C and 30 °C, respectively, to determine the rates of anaerobic CO2 production, Q10 values, and their relations to soil properties. Over 70-d incubation, temperature rise significantly increased the mean rates by 70%–136% (from 10 °C to 20 °C) and 64%–142% (from 20 °C to 30 °C) among the marshes, with the mean Q10 values ranging from 1.61 to 2.66. The rates of CO2 production and Q10 values were significantly affected by wetland type and soil depth. Among marshes, the Q10 of the FPa and NTPa soils was higher than that of the TPa soil (for 0–10 cm and 10–20 cm but for 20–30 cm); along soil depths, the Q10 of the top soil was higher than that of the subsoil (for FPa and NTPa but for TPa). Q10 was affected by total organic carbon (TOC), salinity and pH, and the effects were different with marshes. TOC was a main factor regulating Q10 for the freshwater and the no-tidal salt marshes, while salinity and pH were main factors for the tidal salt marsh. The findings highlight an interactive mechanism of soil property and tidal underlying the response of SOM decomposition to temperature change in estuarine wetlands.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anaerobic SOM decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estuarine wetland</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jisong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ning, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Andong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qiuxian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xuehong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shuwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Zhenbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yajie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Junbao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ecological indicators</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2001</subfield><subfield code="g">124</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="w">(DE-576)259272388</subfield><subfield code="x">1872-7034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield></datafield></record></collection>
|
score |
7.4021854 |