Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method
Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Metho...
Ausführliche Beschreibung
Autor*in: |
Wu, Zeyu [verfasserIn] Xian, Zhaojun [verfasserIn] Ma, Wanru [verfasserIn] Liu, Qingsong [verfasserIn] Huang, Xusheng [verfasserIn] Xiong, Baoyi [verfasserIn] He, Shudong [verfasserIn] Zhang, Wencheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computer methods and programs in biomedicine - Amsterdam : Elsevier, 1985, 200 |
---|---|
Übergeordnetes Werk: |
volume:200 |
DOI / URN: |
10.1016/j.cmpb.2021.105943 |
---|
Katalog-ID: |
ELV005601878 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005601878 | ||
003 | DE-627 | ||
005 | 20230524161707.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cmpb.2021.105943 |2 doi | |
035 | |a (DE-627)ELV005601878 | ||
035 | |a (ELSEVIER)S0169-2607(21)00017-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 610 |q DE-600 |
084 | |a 44.32 |2 bkl | ||
100 | 1 | |a Wu, Zeyu |e verfasserin |0 (orcid)0000-0003-1173-7297 |4 aut | |
245 | 1 | 0 | |a Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Methods: Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output.Results: The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed.Conclusions: ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction. | ||
650 | 4 | |a Blood brain barrier permeability | |
650 | 4 | |a Artificial neural network | |
650 | 4 | |a Group contribution method | |
650 | 4 | |a log BB | |
650 | 4 | |a UNIFAC | |
700 | 1 | |a Xian, Zhaojun |e verfasserin |4 aut | |
700 | 1 | |a Ma, Wanru |e verfasserin |4 aut | |
700 | 1 | |a Liu, Qingsong |e verfasserin |4 aut | |
700 | 1 | |a Huang, Xusheng |e verfasserin |4 aut | |
700 | 1 | |a Xiong, Baoyi |e verfasserin |4 aut | |
700 | 1 | |a He, Shudong |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Wencheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computer methods and programs in biomedicine |d Amsterdam : Elsevier, 1985 |g 200 |h Online-Ressource |w (DE-627)265783593 |w (DE-600)1466281-4 |w (DE-576)074890883 |x 1872-7565 |7 nnns |
773 | 1 | 8 | |g volume:200 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 44.32 |j Medizinische Mathematik |j medizinische Statistik |
951 | |a AR | ||
952 | |d 200 |
author_variant |
z w zw z x zx w m wm q l ql x h xh b x bx s h sh w z wz |
---|---|
matchkey_str |
article:18727565:2021----::riiilerlewrapocfrrdciglobanareprebltbsd |
hierarchy_sort_str |
2021 |
bklnumber |
44.32 |
publishDate |
2021 |
allfields |
10.1016/j.cmpb.2021.105943 doi (DE-627)ELV005601878 (ELSEVIER)S0169-2607(21)00017-1 DE-627 ger DE-627 rda eng 004 610 DE-600 44.32 bkl Wu, Zeyu verfasserin (orcid)0000-0003-1173-7297 aut Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Methods: Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output.Results: The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed.Conclusions: ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction. Blood brain barrier permeability Artificial neural network Group contribution method log BB UNIFAC Xian, Zhaojun verfasserin aut Ma, Wanru verfasserin aut Liu, Qingsong verfasserin aut Huang, Xusheng verfasserin aut Xiong, Baoyi verfasserin aut He, Shudong verfasserin aut Zhang, Wencheng verfasserin aut Enthalten in Computer methods and programs in biomedicine Amsterdam : Elsevier, 1985 200 Online-Ressource (DE-627)265783593 (DE-600)1466281-4 (DE-576)074890883 1872-7565 nnns volume:200 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.32 Medizinische Mathematik medizinische Statistik AR 200 |
spelling |
10.1016/j.cmpb.2021.105943 doi (DE-627)ELV005601878 (ELSEVIER)S0169-2607(21)00017-1 DE-627 ger DE-627 rda eng 004 610 DE-600 44.32 bkl Wu, Zeyu verfasserin (orcid)0000-0003-1173-7297 aut Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Methods: Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output.Results: The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed.Conclusions: ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction. Blood brain barrier permeability Artificial neural network Group contribution method log BB UNIFAC Xian, Zhaojun verfasserin aut Ma, Wanru verfasserin aut Liu, Qingsong verfasserin aut Huang, Xusheng verfasserin aut Xiong, Baoyi verfasserin aut He, Shudong verfasserin aut Zhang, Wencheng verfasserin aut Enthalten in Computer methods and programs in biomedicine Amsterdam : Elsevier, 1985 200 Online-Ressource (DE-627)265783593 (DE-600)1466281-4 (DE-576)074890883 1872-7565 nnns volume:200 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.32 Medizinische Mathematik medizinische Statistik AR 200 |
allfields_unstemmed |
10.1016/j.cmpb.2021.105943 doi (DE-627)ELV005601878 (ELSEVIER)S0169-2607(21)00017-1 DE-627 ger DE-627 rda eng 004 610 DE-600 44.32 bkl Wu, Zeyu verfasserin (orcid)0000-0003-1173-7297 aut Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Methods: Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output.Results: The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed.Conclusions: ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction. Blood brain barrier permeability Artificial neural network Group contribution method log BB UNIFAC Xian, Zhaojun verfasserin aut Ma, Wanru verfasserin aut Liu, Qingsong verfasserin aut Huang, Xusheng verfasserin aut Xiong, Baoyi verfasserin aut He, Shudong verfasserin aut Zhang, Wencheng verfasserin aut Enthalten in Computer methods and programs in biomedicine Amsterdam : Elsevier, 1985 200 Online-Ressource (DE-627)265783593 (DE-600)1466281-4 (DE-576)074890883 1872-7565 nnns volume:200 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.32 Medizinische Mathematik medizinische Statistik AR 200 |
allfieldsGer |
10.1016/j.cmpb.2021.105943 doi (DE-627)ELV005601878 (ELSEVIER)S0169-2607(21)00017-1 DE-627 ger DE-627 rda eng 004 610 DE-600 44.32 bkl Wu, Zeyu verfasserin (orcid)0000-0003-1173-7297 aut Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Methods: Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output.Results: The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed.Conclusions: ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction. Blood brain barrier permeability Artificial neural network Group contribution method log BB UNIFAC Xian, Zhaojun verfasserin aut Ma, Wanru verfasserin aut Liu, Qingsong verfasserin aut Huang, Xusheng verfasserin aut Xiong, Baoyi verfasserin aut He, Shudong verfasserin aut Zhang, Wencheng verfasserin aut Enthalten in Computer methods and programs in biomedicine Amsterdam : Elsevier, 1985 200 Online-Ressource (DE-627)265783593 (DE-600)1466281-4 (DE-576)074890883 1872-7565 nnns volume:200 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.32 Medizinische Mathematik medizinische Statistik AR 200 |
allfieldsSound |
10.1016/j.cmpb.2021.105943 doi (DE-627)ELV005601878 (ELSEVIER)S0169-2607(21)00017-1 DE-627 ger DE-627 rda eng 004 610 DE-600 44.32 bkl Wu, Zeyu verfasserin (orcid)0000-0003-1173-7297 aut Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Methods: Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output.Results: The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed.Conclusions: ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction. Blood brain barrier permeability Artificial neural network Group contribution method log BB UNIFAC Xian, Zhaojun verfasserin aut Ma, Wanru verfasserin aut Liu, Qingsong verfasserin aut Huang, Xusheng verfasserin aut Xiong, Baoyi verfasserin aut He, Shudong verfasserin aut Zhang, Wencheng verfasserin aut Enthalten in Computer methods and programs in biomedicine Amsterdam : Elsevier, 1985 200 Online-Ressource (DE-627)265783593 (DE-600)1466281-4 (DE-576)074890883 1872-7565 nnns volume:200 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.32 Medizinische Mathematik medizinische Statistik AR 200 |
language |
English |
source |
Enthalten in Computer methods and programs in biomedicine 200 volume:200 |
sourceStr |
Enthalten in Computer methods and programs in biomedicine 200 volume:200 |
format_phy_str_mv |
Article |
bklname |
Medizinische Mathematik medizinische Statistik |
institution |
findex.gbv.de |
topic_facet |
Blood brain barrier permeability Artificial neural network Group contribution method log BB UNIFAC |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Computer methods and programs in biomedicine |
authorswithroles_txt_mv |
Wu, Zeyu @@aut@@ Xian, Zhaojun @@aut@@ Ma, Wanru @@aut@@ Liu, Qingsong @@aut@@ Huang, Xusheng @@aut@@ Xiong, Baoyi @@aut@@ He, Shudong @@aut@@ Zhang, Wencheng @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
265783593 |
dewey-sort |
14 |
id |
ELV005601878 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005601878</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161707.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cmpb.2021.105943</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005601878</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-2607(21)00017-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Zeyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1173-7297</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Methods: Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output.Results: The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed.Conclusions: ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood brain barrier permeability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group contribution method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">log BB</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">UNIFAC</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xian, Zhaojun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Wanru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Qingsong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Xusheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Baoyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Shudong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wencheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computer methods and programs in biomedicine</subfield><subfield code="d">Amsterdam : Elsevier, 1985</subfield><subfield code="g">200</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)265783593</subfield><subfield code="w">(DE-600)1466281-4</subfield><subfield code="w">(DE-576)074890883</subfield><subfield code="x">1872-7565</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:200</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.32</subfield><subfield code="j">Medizinische Mathematik</subfield><subfield code="j">medizinische Statistik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">200</subfield></datafield></record></collection>
|
author |
Wu, Zeyu |
spellingShingle |
Wu, Zeyu ddc 004 bkl 44.32 misc Blood brain barrier permeability misc Artificial neural network misc Group contribution method misc log BB misc UNIFAC Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method |
authorStr |
Wu, Zeyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)265783593 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-7565 |
topic_title |
004 610 DE-600 44.32 bkl Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method Blood brain barrier permeability Artificial neural network Group contribution method log BB UNIFAC |
topic |
ddc 004 bkl 44.32 misc Blood brain barrier permeability misc Artificial neural network misc Group contribution method misc log BB misc UNIFAC |
topic_unstemmed |
ddc 004 bkl 44.32 misc Blood brain barrier permeability misc Artificial neural network misc Group contribution method misc log BB misc UNIFAC |
topic_browse |
ddc 004 bkl 44.32 misc Blood brain barrier permeability misc Artificial neural network misc Group contribution method misc log BB misc UNIFAC |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computer methods and programs in biomedicine |
hierarchy_parent_id |
265783593 |
dewey-tens |
000 - Computer science, knowledge & systems 610 - Medicine & health |
hierarchy_top_title |
Computer methods and programs in biomedicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)265783593 (DE-600)1466281-4 (DE-576)074890883 |
title |
Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method |
ctrlnum |
(DE-627)ELV005601878 (ELSEVIER)S0169-2607(21)00017-1 |
title_full |
Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method |
author_sort |
Wu, Zeyu |
journal |
Computer methods and programs in biomedicine |
journalStr |
Computer methods and programs in biomedicine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Wu, Zeyu Xian, Zhaojun Ma, Wanru Liu, Qingsong Huang, Xusheng Xiong, Baoyi He, Shudong Zhang, Wencheng |
container_volume |
200 |
class |
004 610 DE-600 44.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, Zeyu |
doi_str_mv |
10.1016/j.cmpb.2021.105943 |
normlink |
(ORCID)0000-0003-1173-7297 |
normlink_prefix_str_mv |
(orcid)0000-0003-1173-7297 |
dewey-full |
004 610 |
author2-role |
verfasserin |
title_sort |
artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method |
title_auth |
Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method |
abstract |
Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Methods: Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output.Results: The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed.Conclusions: ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction. |
abstractGer |
Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Methods: Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output.Results: The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed.Conclusions: ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction. |
abstract_unstemmed |
Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Methods: Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output.Results: The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed.Conclusions: ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method |
remote_bool |
true |
author2 |
Xian, Zhaojun Ma, Wanru Liu, Qingsong Huang, Xusheng Xiong, Baoyi He, Shudong Zhang, Wencheng |
author2Str |
Xian, Zhaojun Ma, Wanru Liu, Qingsong Huang, Xusheng Xiong, Baoyi He, Shudong Zhang, Wencheng |
ppnlink |
265783593 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cmpb.2021.105943 |
up_date |
2024-07-06T18:31:39.269Z |
_version_ |
1803855540278788096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005601878</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161707.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cmpb.2021.105943</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005601878</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-2607(21)00017-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Zeyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1173-7297</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and Objective: The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors.Methods: Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output.Results: The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed.Conclusions: ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood brain barrier permeability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group contribution method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">log BB</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">UNIFAC</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xian, Zhaojun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Wanru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Qingsong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Xusheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Baoyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Shudong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wencheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computer methods and programs in biomedicine</subfield><subfield code="d">Amsterdam : Elsevier, 1985</subfield><subfield code="g">200</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)265783593</subfield><subfield code="w">(DE-600)1466281-4</subfield><subfield code="w">(DE-576)074890883</subfield><subfield code="x">1872-7565</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:200</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.32</subfield><subfield code="j">Medizinische Mathematik</subfield><subfield code="j">medizinische Statistik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">200</subfield></datafield></record></collection>
|
score |
7.402669 |