Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring
Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality prese...
Ausführliche Beschreibung
Autor*in: |
Wu, Ping [verfasserIn] Zhang, Xujie [verfasserIn] He, Jiajun [verfasserIn] Lou, Siwei [verfasserIn] Gao, Jinfeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Canonical correlation analysis |
---|
Übergeordnetes Werk: |
Enthalten in: Process safety and environmental protection - Amsterdam : Elsevier, 1990, 147, Seite 1088-1100 |
---|---|
Übergeordnetes Werk: |
volume:147 ; pages:1088-1100 |
DOI / URN: |
10.1016/j.psep.2021.01.028 |
---|
Katalog-ID: |
ELV005617987 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005617987 | ||
003 | DE-627 | ||
005 | 20230524165321.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.psep.2021.01.028 |2 doi | |
035 | |a (DE-627)ELV005617987 | ||
035 | |a (ELSEVIER)S0957-5820(21)00037-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |a 540 |a 333.7 |q DE-600 |
084 | |a 58.18 |2 bkl | ||
100 | 1 | |a Wu, Ping |e verfasserin |0 (orcid)0000-0002-2729-9669 |4 aut | |
245 | 1 | 0 | |a Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality preserving randomized canonical correlation analysis (LPRCCA) method is proposed for real-time nonlinear process monitoring. The basic idea is to map the original data onto a randomized low-dimensional feature space through random Fourier feature map, and then integrate the local geometric structure information to improve data mining performance. On the basis of explicit low-dimensional random Fourier features, the computational cost of the online feature extraction is dramatically reduced. The proposed LPRCCA method is significantly more favorable than kernel-based methods for nonlinear process monitoring. The applicability and effectiveness of the proposed process monitoring scheme are verified through a numerical example and an industrial benchmark of the Tennessee Eastman process (TEP) by the comparisons with other relevant methods. | ||
650 | 4 | |a Canonical correlation analysis | |
650 | 4 | |a Random Fourier feature map | |
650 | 4 | |a Local geometric structure information | |
650 | 4 | |a Kernel methods | |
650 | 4 | |a Real-time process monitoring | |
700 | 1 | |a Zhang, Xujie |e verfasserin |4 aut | |
700 | 1 | |a He, Jiajun |e verfasserin |4 aut | |
700 | 1 | |a Lou, Siwei |e verfasserin |4 aut | |
700 | 1 | |a Gao, Jinfeng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Process safety and environmental protection |d Amsterdam : Elsevier, 1990 |g 147, Seite 1088-1100 |h Online-Ressource |w (DE-627)318710420 |w (DE-600)2008004-9 |w (DE-576)284747785 |7 nnns |
773 | 1 | 8 | |g volume:147 |g pages:1088-1100 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.18 |j Chemische Betriebstechnik |
951 | |a AR | ||
952 | |d 147 |h 1088-1100 |
author_variant |
p w pw x z xz j h jh s l sl j g jg |
---|---|
matchkey_str |
wupingzhangxujiehejiajunlousiweigaojinfe:2021----:oaiyrsrigadmzdaoiacreainnlssoratmn |
hierarchy_sort_str |
2021 |
bklnumber |
58.18 |
publishDate |
2021 |
allfields |
10.1016/j.psep.2021.01.028 doi (DE-627)ELV005617987 (ELSEVIER)S0957-5820(21)00037-9 DE-627 ger DE-627 rda eng 660 540 333.7 DE-600 58.18 bkl Wu, Ping verfasserin (orcid)0000-0002-2729-9669 aut Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality preserving randomized canonical correlation analysis (LPRCCA) method is proposed for real-time nonlinear process monitoring. The basic idea is to map the original data onto a randomized low-dimensional feature space through random Fourier feature map, and then integrate the local geometric structure information to improve data mining performance. On the basis of explicit low-dimensional random Fourier features, the computational cost of the online feature extraction is dramatically reduced. The proposed LPRCCA method is significantly more favorable than kernel-based methods for nonlinear process monitoring. The applicability and effectiveness of the proposed process monitoring scheme are verified through a numerical example and an industrial benchmark of the Tennessee Eastman process (TEP) by the comparisons with other relevant methods. Canonical correlation analysis Random Fourier feature map Local geometric structure information Kernel methods Real-time process monitoring Zhang, Xujie verfasserin aut He, Jiajun verfasserin aut Lou, Siwei verfasserin aut Gao, Jinfeng verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 147, Seite 1088-1100 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:147 pages:1088-1100 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.18 Chemische Betriebstechnik AR 147 1088-1100 |
spelling |
10.1016/j.psep.2021.01.028 doi (DE-627)ELV005617987 (ELSEVIER)S0957-5820(21)00037-9 DE-627 ger DE-627 rda eng 660 540 333.7 DE-600 58.18 bkl Wu, Ping verfasserin (orcid)0000-0002-2729-9669 aut Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality preserving randomized canonical correlation analysis (LPRCCA) method is proposed for real-time nonlinear process monitoring. The basic idea is to map the original data onto a randomized low-dimensional feature space through random Fourier feature map, and then integrate the local geometric structure information to improve data mining performance. On the basis of explicit low-dimensional random Fourier features, the computational cost of the online feature extraction is dramatically reduced. The proposed LPRCCA method is significantly more favorable than kernel-based methods for nonlinear process monitoring. The applicability and effectiveness of the proposed process monitoring scheme are verified through a numerical example and an industrial benchmark of the Tennessee Eastman process (TEP) by the comparisons with other relevant methods. Canonical correlation analysis Random Fourier feature map Local geometric structure information Kernel methods Real-time process monitoring Zhang, Xujie verfasserin aut He, Jiajun verfasserin aut Lou, Siwei verfasserin aut Gao, Jinfeng verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 147, Seite 1088-1100 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:147 pages:1088-1100 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.18 Chemische Betriebstechnik AR 147 1088-1100 |
allfields_unstemmed |
10.1016/j.psep.2021.01.028 doi (DE-627)ELV005617987 (ELSEVIER)S0957-5820(21)00037-9 DE-627 ger DE-627 rda eng 660 540 333.7 DE-600 58.18 bkl Wu, Ping verfasserin (orcid)0000-0002-2729-9669 aut Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality preserving randomized canonical correlation analysis (LPRCCA) method is proposed for real-time nonlinear process monitoring. The basic idea is to map the original data onto a randomized low-dimensional feature space through random Fourier feature map, and then integrate the local geometric structure information to improve data mining performance. On the basis of explicit low-dimensional random Fourier features, the computational cost of the online feature extraction is dramatically reduced. The proposed LPRCCA method is significantly more favorable than kernel-based methods for nonlinear process monitoring. The applicability and effectiveness of the proposed process monitoring scheme are verified through a numerical example and an industrial benchmark of the Tennessee Eastman process (TEP) by the comparisons with other relevant methods. Canonical correlation analysis Random Fourier feature map Local geometric structure information Kernel methods Real-time process monitoring Zhang, Xujie verfasserin aut He, Jiajun verfasserin aut Lou, Siwei verfasserin aut Gao, Jinfeng verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 147, Seite 1088-1100 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:147 pages:1088-1100 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.18 Chemische Betriebstechnik AR 147 1088-1100 |
allfieldsGer |
10.1016/j.psep.2021.01.028 doi (DE-627)ELV005617987 (ELSEVIER)S0957-5820(21)00037-9 DE-627 ger DE-627 rda eng 660 540 333.7 DE-600 58.18 bkl Wu, Ping verfasserin (orcid)0000-0002-2729-9669 aut Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality preserving randomized canonical correlation analysis (LPRCCA) method is proposed for real-time nonlinear process monitoring. The basic idea is to map the original data onto a randomized low-dimensional feature space through random Fourier feature map, and then integrate the local geometric structure information to improve data mining performance. On the basis of explicit low-dimensional random Fourier features, the computational cost of the online feature extraction is dramatically reduced. The proposed LPRCCA method is significantly more favorable than kernel-based methods for nonlinear process monitoring. The applicability and effectiveness of the proposed process monitoring scheme are verified through a numerical example and an industrial benchmark of the Tennessee Eastman process (TEP) by the comparisons with other relevant methods. Canonical correlation analysis Random Fourier feature map Local geometric structure information Kernel methods Real-time process monitoring Zhang, Xujie verfasserin aut He, Jiajun verfasserin aut Lou, Siwei verfasserin aut Gao, Jinfeng verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 147, Seite 1088-1100 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:147 pages:1088-1100 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.18 Chemische Betriebstechnik AR 147 1088-1100 |
allfieldsSound |
10.1016/j.psep.2021.01.028 doi (DE-627)ELV005617987 (ELSEVIER)S0957-5820(21)00037-9 DE-627 ger DE-627 rda eng 660 540 333.7 DE-600 58.18 bkl Wu, Ping verfasserin (orcid)0000-0002-2729-9669 aut Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality preserving randomized canonical correlation analysis (LPRCCA) method is proposed for real-time nonlinear process monitoring. The basic idea is to map the original data onto a randomized low-dimensional feature space through random Fourier feature map, and then integrate the local geometric structure information to improve data mining performance. On the basis of explicit low-dimensional random Fourier features, the computational cost of the online feature extraction is dramatically reduced. The proposed LPRCCA method is significantly more favorable than kernel-based methods for nonlinear process monitoring. The applicability and effectiveness of the proposed process monitoring scheme are verified through a numerical example and an industrial benchmark of the Tennessee Eastman process (TEP) by the comparisons with other relevant methods. Canonical correlation analysis Random Fourier feature map Local geometric structure information Kernel methods Real-time process monitoring Zhang, Xujie verfasserin aut He, Jiajun verfasserin aut Lou, Siwei verfasserin aut Gao, Jinfeng verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 147, Seite 1088-1100 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:147 pages:1088-1100 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.18 Chemische Betriebstechnik AR 147 1088-1100 |
language |
English |
source |
Enthalten in Process safety and environmental protection 147, Seite 1088-1100 volume:147 pages:1088-1100 |
sourceStr |
Enthalten in Process safety and environmental protection 147, Seite 1088-1100 volume:147 pages:1088-1100 |
format_phy_str_mv |
Article |
bklname |
Chemische Betriebstechnik |
institution |
findex.gbv.de |
topic_facet |
Canonical correlation analysis Random Fourier feature map Local geometric structure information Kernel methods Real-time process monitoring |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Process safety and environmental protection |
authorswithroles_txt_mv |
Wu, Ping @@aut@@ Zhang, Xujie @@aut@@ He, Jiajun @@aut@@ Lou, Siwei @@aut@@ Gao, Jinfeng @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
318710420 |
dewey-sort |
3660 |
id |
ELV005617987 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005617987</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524165321.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.psep.2021.01.028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005617987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-5820(21)00037-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">540</subfield><subfield code="a">333.7</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Ping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2729-9669</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality preserving randomized canonical correlation analysis (LPRCCA) method is proposed for real-time nonlinear process monitoring. The basic idea is to map the original data onto a randomized low-dimensional feature space through random Fourier feature map, and then integrate the local geometric structure information to improve data mining performance. On the basis of explicit low-dimensional random Fourier features, the computational cost of the online feature extraction is dramatically reduced. The proposed LPRCCA method is significantly more favorable than kernel-based methods for nonlinear process monitoring. The applicability and effectiveness of the proposed process monitoring scheme are verified through a numerical example and an industrial benchmark of the Tennessee Eastman process (TEP) by the comparisons with other relevant methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canonical correlation analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Fourier feature map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local geometric structure information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real-time process monitoring</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xujie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Jiajun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Siwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Jinfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Process safety and environmental protection</subfield><subfield code="d">Amsterdam : Elsevier, 1990</subfield><subfield code="g">147, Seite 1088-1100</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)318710420</subfield><subfield code="w">(DE-600)2008004-9</subfield><subfield code="w">(DE-576)284747785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">pages:1088-1100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.18</subfield><subfield code="j">Chemische Betriebstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="h">1088-1100</subfield></datafield></record></collection>
|
author |
Wu, Ping |
spellingShingle |
Wu, Ping ddc 660 bkl 58.18 misc Canonical correlation analysis misc Random Fourier feature map misc Local geometric structure information misc Kernel methods misc Real-time process monitoring Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring |
authorStr |
Wu, Ping |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)318710420 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 540 - Chemistry & allied sciences 333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 540 333.7 DE-600 58.18 bkl Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring Canonical correlation analysis Random Fourier feature map Local geometric structure information Kernel methods Real-time process monitoring |
topic |
ddc 660 bkl 58.18 misc Canonical correlation analysis misc Random Fourier feature map misc Local geometric structure information misc Kernel methods misc Real-time process monitoring |
topic_unstemmed |
ddc 660 bkl 58.18 misc Canonical correlation analysis misc Random Fourier feature map misc Local geometric structure information misc Kernel methods misc Real-time process monitoring |
topic_browse |
ddc 660 bkl 58.18 misc Canonical correlation analysis misc Random Fourier feature map misc Local geometric structure information misc Kernel methods misc Real-time process monitoring |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Process safety and environmental protection |
hierarchy_parent_id |
318710420 |
dewey-tens |
660 - Chemical engineering 540 - Chemistry 330 - Economics |
hierarchy_top_title |
Process safety and environmental protection |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 |
title |
Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring |
ctrlnum |
(DE-627)ELV005617987 (ELSEVIER)S0957-5820(21)00037-9 |
title_full |
Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring |
author_sort |
Wu, Ping |
journal |
Process safety and environmental protection |
journalStr |
Process safety and environmental protection |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
1088 |
author_browse |
Wu, Ping Zhang, Xujie He, Jiajun Lou, Siwei Gao, Jinfeng |
container_volume |
147 |
class |
660 540 333.7 DE-600 58.18 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, Ping |
doi_str_mv |
10.1016/j.psep.2021.01.028 |
normlink |
(ORCID)0000-0002-2729-9669 |
normlink_prefix_str_mv |
(orcid)0000-0002-2729-9669 |
dewey-full |
660 540 333.7 |
author2-role |
verfasserin |
title_sort |
locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring |
title_auth |
Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring |
abstract |
Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality preserving randomized canonical correlation analysis (LPRCCA) method is proposed for real-time nonlinear process monitoring. The basic idea is to map the original data onto a randomized low-dimensional feature space through random Fourier feature map, and then integrate the local geometric structure information to improve data mining performance. On the basis of explicit low-dimensional random Fourier features, the computational cost of the online feature extraction is dramatically reduced. The proposed LPRCCA method is significantly more favorable than kernel-based methods for nonlinear process monitoring. The applicability and effectiveness of the proposed process monitoring scheme are verified through a numerical example and an industrial benchmark of the Tennessee Eastman process (TEP) by the comparisons with other relevant methods. |
abstractGer |
Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality preserving randomized canonical correlation analysis (LPRCCA) method is proposed for real-time nonlinear process monitoring. The basic idea is to map the original data onto a randomized low-dimensional feature space through random Fourier feature map, and then integrate the local geometric structure information to improve data mining performance. On the basis of explicit low-dimensional random Fourier features, the computational cost of the online feature extraction is dramatically reduced. The proposed LPRCCA method is significantly more favorable than kernel-based methods for nonlinear process monitoring. The applicability and effectiveness of the proposed process monitoring scheme are verified through a numerical example and an industrial benchmark of the Tennessee Eastman process (TEP) by the comparisons with other relevant methods. |
abstract_unstemmed |
Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality preserving randomized canonical correlation analysis (LPRCCA) method is proposed for real-time nonlinear process monitoring. The basic idea is to map the original data onto a randomized low-dimensional feature space through random Fourier feature map, and then integrate the local geometric structure information to improve data mining performance. On the basis of explicit low-dimensional random Fourier features, the computational cost of the online feature extraction is dramatically reduced. The proposed LPRCCA method is significantly more favorable than kernel-based methods for nonlinear process monitoring. The applicability and effectiveness of the proposed process monitoring scheme are verified through a numerical example and an industrial benchmark of the Tennessee Eastman process (TEP) by the comparisons with other relevant methods. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring |
remote_bool |
true |
author2 |
Zhang, Xujie He, Jiajun Lou, Siwei Gao, Jinfeng |
author2Str |
Zhang, Xujie He, Jiajun Lou, Siwei Gao, Jinfeng |
ppnlink |
318710420 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.psep.2021.01.028 |
up_date |
2024-07-06T18:34:55.868Z |
_version_ |
1803855746426732544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005617987</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524165321.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.psep.2021.01.028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005617987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-5820(21)00037-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">540</subfield><subfield code="a">333.7</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Ping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2729-9669</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Locality preserving randomized canonical correlation analysis for real-time nonlinear process monitoring</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hazard identification and analysis is an important step in the process safety assessment/management in the modern process industry. For hazard identification, real-time monitoring of process operations plays a critical role to establish required safety measures. In this paper, a novel locality preserving randomized canonical correlation analysis (LPRCCA) method is proposed for real-time nonlinear process monitoring. The basic idea is to map the original data onto a randomized low-dimensional feature space through random Fourier feature map, and then integrate the local geometric structure information to improve data mining performance. On the basis of explicit low-dimensional random Fourier features, the computational cost of the online feature extraction is dramatically reduced. The proposed LPRCCA method is significantly more favorable than kernel-based methods for nonlinear process monitoring. The applicability and effectiveness of the proposed process monitoring scheme are verified through a numerical example and an industrial benchmark of the Tennessee Eastman process (TEP) by the comparisons with other relevant methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canonical correlation analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Fourier feature map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local geometric structure information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real-time process monitoring</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xujie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Jiajun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Siwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Jinfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Process safety and environmental protection</subfield><subfield code="d">Amsterdam : Elsevier, 1990</subfield><subfield code="g">147, Seite 1088-1100</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)318710420</subfield><subfield code="w">(DE-600)2008004-9</subfield><subfield code="w">(DE-576)284747785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">pages:1088-1100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.18</subfield><subfield code="j">Chemische Betriebstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="h">1088-1100</subfield></datafield></record></collection>
|
score |
7.4008236 |