Identification of the mutation signature of the cancer genome caused by irradiation
Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experi...
Ausführliche Beschreibung
Autor*in: |
Kageyama, Shun-Ichiro [verfasserIn] Du, Junyan [verfasserIn] Kaneko, Syuzo [verfasserIn] Hamamoto, Ryuji [verfasserIn] Yamaguchi, Shigeo [verfasserIn] Yamashita, Riu [verfasserIn] Okumura, Masayuki [verfasserIn] Motegi, Atsushi [verfasserIn] Hojo, Hidehiro [verfasserIn] Nakamura, Masaki [verfasserIn] Tsuchihara, Katsuya [verfasserIn] Akimoto, Tetsuo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Radiotherapy and oncology - Amsterdam [u.a.] : Elsevier Science, 1983, 155, Seite 10-16 |
---|---|
Übergeordnetes Werk: |
volume:155 ; pages:10-16 |
DOI / URN: |
10.1016/j.radonc.2020.10.020 |
---|
Katalog-ID: |
ELV005692598 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005692598 | ||
003 | DE-627 | ||
005 | 20230524150540.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.radonc.2020.10.020 |2 doi | |
035 | |a (DE-627)ELV005692598 | ||
035 | |a (ELSEVIER)S0167-8140(20)30856-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q DE-600 |
084 | |a 44.81 |2 bkl | ||
084 | |a 44.64 |2 bkl | ||
100 | 1 | |a Kageyama, Shun-Ichiro |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identification of the mutation signature of the cancer genome caused by irradiation |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experimental system to analyse the presence of de novo mutations in the cancer genome of irradiated (60 Gy/20 fr/4 weeks) oesophageal cancer cell lines. Subsequently, we performed whole-genome, chromatin immunoprecipitation, and RNA sequencing using untreated and irradiated samples to assess the damage to the genome caused by radiation and understand the underlying mechanism.Results: The irradiated cancer cells exhibited hotspots for the de novo 8502–12966 single nucleotide variants and 954–1,331 indels on the chromosome. These single nucleotide variants primarily originated from double-stranded break repair errors, as determined using mutation signature analysis. The hotspots partially overlapped with the sites of H3K9 trimethylation, which are regions characterised by a weak capacity for double-stranded break repair.Conclusion: This study highlights the signature and underlying mechanism of radiation on the cancer genome. | ||
650 | 4 | |a Irradiation | |
650 | 4 | |a Radiotherapy | |
650 | 4 | |a Whole genome sequence | |
650 | 4 | |a Cancer genome | |
650 | 4 | |a Mutation signature | |
650 | 4 | |a Mutation hot spot | |
700 | 1 | |a Du, Junyan |e verfasserin |0 (orcid)0000-0003-1440-5538 |4 aut | |
700 | 1 | |a Kaneko, Syuzo |e verfasserin |4 aut | |
700 | 1 | |a Hamamoto, Ryuji |e verfasserin |0 (orcid)0000-0002-2632-1334 |4 aut | |
700 | 1 | |a Yamaguchi, Shigeo |e verfasserin |4 aut | |
700 | 1 | |a Yamashita, Riu |e verfasserin |4 aut | |
700 | 1 | |a Okumura, Masayuki |e verfasserin |0 (orcid)0000-0002-9842-165X |4 aut | |
700 | 1 | |a Motegi, Atsushi |e verfasserin |4 aut | |
700 | 1 | |a Hojo, Hidehiro |e verfasserin |4 aut | |
700 | 1 | |a Nakamura, Masaki |e verfasserin |0 (orcid)0000-0002-4431-8892 |4 aut | |
700 | 1 | |a Tsuchihara, Katsuya |e verfasserin |4 aut | |
700 | 1 | |a Akimoto, Tetsuo |e verfasserin |0 (orcid)0000-0003-0881-1345 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Radiotherapy and oncology |d Amsterdam [u.a.] : Elsevier Science, 1983 |g 155, Seite 10-16 |h Online-Ressource |w (DE-627)306710110 |w (DE-600)1500707-8 |w (DE-576)082435731 |x 1879-0887 |7 nnns |
773 | 1 | 8 | |g volume:155 |g pages:10-16 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 44.81 |j Onkologie |
936 | b | k | |a 44.64 |j Radiologie |
951 | |a AR | ||
952 | |d 155 |h 10-16 |
author_variant |
s i k sik j d jd s k sk r h rh s y sy r y ry m o mo a m am h h hh m n mn k t kt t a ta |
---|---|
matchkey_str |
article:18790887:2020----::dniiainfhmttosgauefhcnegnmc |
hierarchy_sort_str |
2020 |
bklnumber |
44.81 44.64 |
publishDate |
2020 |
allfields |
10.1016/j.radonc.2020.10.020 doi (DE-627)ELV005692598 (ELSEVIER)S0167-8140(20)30856-2 DE-627 ger DE-627 rda eng 610 DE-600 44.81 bkl 44.64 bkl Kageyama, Shun-Ichiro verfasserin aut Identification of the mutation signature of the cancer genome caused by irradiation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experimental system to analyse the presence of de novo mutations in the cancer genome of irradiated (60 Gy/20 fr/4 weeks) oesophageal cancer cell lines. Subsequently, we performed whole-genome, chromatin immunoprecipitation, and RNA sequencing using untreated and irradiated samples to assess the damage to the genome caused by radiation and understand the underlying mechanism.Results: The irradiated cancer cells exhibited hotspots for the de novo 8502–12966 single nucleotide variants and 954–1,331 indels on the chromosome. These single nucleotide variants primarily originated from double-stranded break repair errors, as determined using mutation signature analysis. The hotspots partially overlapped with the sites of H3K9 trimethylation, which are regions characterised by a weak capacity for double-stranded break repair.Conclusion: This study highlights the signature and underlying mechanism of radiation on the cancer genome. Irradiation Radiotherapy Whole genome sequence Cancer genome Mutation signature Mutation hot spot Du, Junyan verfasserin (orcid)0000-0003-1440-5538 aut Kaneko, Syuzo verfasserin aut Hamamoto, Ryuji verfasserin (orcid)0000-0002-2632-1334 aut Yamaguchi, Shigeo verfasserin aut Yamashita, Riu verfasserin aut Okumura, Masayuki verfasserin (orcid)0000-0002-9842-165X aut Motegi, Atsushi verfasserin aut Hojo, Hidehiro verfasserin aut Nakamura, Masaki verfasserin (orcid)0000-0002-4431-8892 aut Tsuchihara, Katsuya verfasserin aut Akimoto, Tetsuo verfasserin (orcid)0000-0003-0881-1345 aut Enthalten in Radiotherapy and oncology Amsterdam [u.a.] : Elsevier Science, 1983 155, Seite 10-16 Online-Ressource (DE-627)306710110 (DE-600)1500707-8 (DE-576)082435731 1879-0887 nnns volume:155 pages:10-16 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.81 Onkologie 44.64 Radiologie AR 155 10-16 |
spelling |
10.1016/j.radonc.2020.10.020 doi (DE-627)ELV005692598 (ELSEVIER)S0167-8140(20)30856-2 DE-627 ger DE-627 rda eng 610 DE-600 44.81 bkl 44.64 bkl Kageyama, Shun-Ichiro verfasserin aut Identification of the mutation signature of the cancer genome caused by irradiation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experimental system to analyse the presence of de novo mutations in the cancer genome of irradiated (60 Gy/20 fr/4 weeks) oesophageal cancer cell lines. Subsequently, we performed whole-genome, chromatin immunoprecipitation, and RNA sequencing using untreated and irradiated samples to assess the damage to the genome caused by radiation and understand the underlying mechanism.Results: The irradiated cancer cells exhibited hotspots for the de novo 8502–12966 single nucleotide variants and 954–1,331 indels on the chromosome. These single nucleotide variants primarily originated from double-stranded break repair errors, as determined using mutation signature analysis. The hotspots partially overlapped with the sites of H3K9 trimethylation, which are regions characterised by a weak capacity for double-stranded break repair.Conclusion: This study highlights the signature and underlying mechanism of radiation on the cancer genome. Irradiation Radiotherapy Whole genome sequence Cancer genome Mutation signature Mutation hot spot Du, Junyan verfasserin (orcid)0000-0003-1440-5538 aut Kaneko, Syuzo verfasserin aut Hamamoto, Ryuji verfasserin (orcid)0000-0002-2632-1334 aut Yamaguchi, Shigeo verfasserin aut Yamashita, Riu verfasserin aut Okumura, Masayuki verfasserin (orcid)0000-0002-9842-165X aut Motegi, Atsushi verfasserin aut Hojo, Hidehiro verfasserin aut Nakamura, Masaki verfasserin (orcid)0000-0002-4431-8892 aut Tsuchihara, Katsuya verfasserin aut Akimoto, Tetsuo verfasserin (orcid)0000-0003-0881-1345 aut Enthalten in Radiotherapy and oncology Amsterdam [u.a.] : Elsevier Science, 1983 155, Seite 10-16 Online-Ressource (DE-627)306710110 (DE-600)1500707-8 (DE-576)082435731 1879-0887 nnns volume:155 pages:10-16 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.81 Onkologie 44.64 Radiologie AR 155 10-16 |
allfields_unstemmed |
10.1016/j.radonc.2020.10.020 doi (DE-627)ELV005692598 (ELSEVIER)S0167-8140(20)30856-2 DE-627 ger DE-627 rda eng 610 DE-600 44.81 bkl 44.64 bkl Kageyama, Shun-Ichiro verfasserin aut Identification of the mutation signature of the cancer genome caused by irradiation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experimental system to analyse the presence of de novo mutations in the cancer genome of irradiated (60 Gy/20 fr/4 weeks) oesophageal cancer cell lines. Subsequently, we performed whole-genome, chromatin immunoprecipitation, and RNA sequencing using untreated and irradiated samples to assess the damage to the genome caused by radiation and understand the underlying mechanism.Results: The irradiated cancer cells exhibited hotspots for the de novo 8502–12966 single nucleotide variants and 954–1,331 indels on the chromosome. These single nucleotide variants primarily originated from double-stranded break repair errors, as determined using mutation signature analysis. The hotspots partially overlapped with the sites of H3K9 trimethylation, which are regions characterised by a weak capacity for double-stranded break repair.Conclusion: This study highlights the signature and underlying mechanism of radiation on the cancer genome. Irradiation Radiotherapy Whole genome sequence Cancer genome Mutation signature Mutation hot spot Du, Junyan verfasserin (orcid)0000-0003-1440-5538 aut Kaneko, Syuzo verfasserin aut Hamamoto, Ryuji verfasserin (orcid)0000-0002-2632-1334 aut Yamaguchi, Shigeo verfasserin aut Yamashita, Riu verfasserin aut Okumura, Masayuki verfasserin (orcid)0000-0002-9842-165X aut Motegi, Atsushi verfasserin aut Hojo, Hidehiro verfasserin aut Nakamura, Masaki verfasserin (orcid)0000-0002-4431-8892 aut Tsuchihara, Katsuya verfasserin aut Akimoto, Tetsuo verfasserin (orcid)0000-0003-0881-1345 aut Enthalten in Radiotherapy and oncology Amsterdam [u.a.] : Elsevier Science, 1983 155, Seite 10-16 Online-Ressource (DE-627)306710110 (DE-600)1500707-8 (DE-576)082435731 1879-0887 nnns volume:155 pages:10-16 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.81 Onkologie 44.64 Radiologie AR 155 10-16 |
allfieldsGer |
10.1016/j.radonc.2020.10.020 doi (DE-627)ELV005692598 (ELSEVIER)S0167-8140(20)30856-2 DE-627 ger DE-627 rda eng 610 DE-600 44.81 bkl 44.64 bkl Kageyama, Shun-Ichiro verfasserin aut Identification of the mutation signature of the cancer genome caused by irradiation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experimental system to analyse the presence of de novo mutations in the cancer genome of irradiated (60 Gy/20 fr/4 weeks) oesophageal cancer cell lines. Subsequently, we performed whole-genome, chromatin immunoprecipitation, and RNA sequencing using untreated and irradiated samples to assess the damage to the genome caused by radiation and understand the underlying mechanism.Results: The irradiated cancer cells exhibited hotspots for the de novo 8502–12966 single nucleotide variants and 954–1,331 indels on the chromosome. These single nucleotide variants primarily originated from double-stranded break repair errors, as determined using mutation signature analysis. The hotspots partially overlapped with the sites of H3K9 trimethylation, which are regions characterised by a weak capacity for double-stranded break repair.Conclusion: This study highlights the signature and underlying mechanism of radiation on the cancer genome. Irradiation Radiotherapy Whole genome sequence Cancer genome Mutation signature Mutation hot spot Du, Junyan verfasserin (orcid)0000-0003-1440-5538 aut Kaneko, Syuzo verfasserin aut Hamamoto, Ryuji verfasserin (orcid)0000-0002-2632-1334 aut Yamaguchi, Shigeo verfasserin aut Yamashita, Riu verfasserin aut Okumura, Masayuki verfasserin (orcid)0000-0002-9842-165X aut Motegi, Atsushi verfasserin aut Hojo, Hidehiro verfasserin aut Nakamura, Masaki verfasserin (orcid)0000-0002-4431-8892 aut Tsuchihara, Katsuya verfasserin aut Akimoto, Tetsuo verfasserin (orcid)0000-0003-0881-1345 aut Enthalten in Radiotherapy and oncology Amsterdam [u.a.] : Elsevier Science, 1983 155, Seite 10-16 Online-Ressource (DE-627)306710110 (DE-600)1500707-8 (DE-576)082435731 1879-0887 nnns volume:155 pages:10-16 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.81 Onkologie 44.64 Radiologie AR 155 10-16 |
allfieldsSound |
10.1016/j.radonc.2020.10.020 doi (DE-627)ELV005692598 (ELSEVIER)S0167-8140(20)30856-2 DE-627 ger DE-627 rda eng 610 DE-600 44.81 bkl 44.64 bkl Kageyama, Shun-Ichiro verfasserin aut Identification of the mutation signature of the cancer genome caused by irradiation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experimental system to analyse the presence of de novo mutations in the cancer genome of irradiated (60 Gy/20 fr/4 weeks) oesophageal cancer cell lines. Subsequently, we performed whole-genome, chromatin immunoprecipitation, and RNA sequencing using untreated and irradiated samples to assess the damage to the genome caused by radiation and understand the underlying mechanism.Results: The irradiated cancer cells exhibited hotspots for the de novo 8502–12966 single nucleotide variants and 954–1,331 indels on the chromosome. These single nucleotide variants primarily originated from double-stranded break repair errors, as determined using mutation signature analysis. The hotspots partially overlapped with the sites of H3K9 trimethylation, which are regions characterised by a weak capacity for double-stranded break repair.Conclusion: This study highlights the signature and underlying mechanism of radiation on the cancer genome. Irradiation Radiotherapy Whole genome sequence Cancer genome Mutation signature Mutation hot spot Du, Junyan verfasserin (orcid)0000-0003-1440-5538 aut Kaneko, Syuzo verfasserin aut Hamamoto, Ryuji verfasserin (orcid)0000-0002-2632-1334 aut Yamaguchi, Shigeo verfasserin aut Yamashita, Riu verfasserin aut Okumura, Masayuki verfasserin (orcid)0000-0002-9842-165X aut Motegi, Atsushi verfasserin aut Hojo, Hidehiro verfasserin aut Nakamura, Masaki verfasserin (orcid)0000-0002-4431-8892 aut Tsuchihara, Katsuya verfasserin aut Akimoto, Tetsuo verfasserin (orcid)0000-0003-0881-1345 aut Enthalten in Radiotherapy and oncology Amsterdam [u.a.] : Elsevier Science, 1983 155, Seite 10-16 Online-Ressource (DE-627)306710110 (DE-600)1500707-8 (DE-576)082435731 1879-0887 nnns volume:155 pages:10-16 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.81 Onkologie 44.64 Radiologie AR 155 10-16 |
language |
English |
source |
Enthalten in Radiotherapy and oncology 155, Seite 10-16 volume:155 pages:10-16 |
sourceStr |
Enthalten in Radiotherapy and oncology 155, Seite 10-16 volume:155 pages:10-16 |
format_phy_str_mv |
Article |
bklname |
Onkologie Radiologie |
institution |
findex.gbv.de |
topic_facet |
Irradiation Radiotherapy Whole genome sequence Cancer genome Mutation signature Mutation hot spot |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Radiotherapy and oncology |
authorswithroles_txt_mv |
Kageyama, Shun-Ichiro @@aut@@ Du, Junyan @@aut@@ Kaneko, Syuzo @@aut@@ Hamamoto, Ryuji @@aut@@ Yamaguchi, Shigeo @@aut@@ Yamashita, Riu @@aut@@ Okumura, Masayuki @@aut@@ Motegi, Atsushi @@aut@@ Hojo, Hidehiro @@aut@@ Nakamura, Masaki @@aut@@ Tsuchihara, Katsuya @@aut@@ Akimoto, Tetsuo @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306710110 |
dewey-sort |
3610 |
id |
ELV005692598 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005692598</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150540.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.radonc.2020.10.020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005692598</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-8140(20)30856-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.81</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.64</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kageyama, Shun-Ichiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of the mutation signature of the cancer genome caused by irradiation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experimental system to analyse the presence of de novo mutations in the cancer genome of irradiated (60 Gy/20 fr/4 weeks) oesophageal cancer cell lines. Subsequently, we performed whole-genome, chromatin immunoprecipitation, and RNA sequencing using untreated and irradiated samples to assess the damage to the genome caused by radiation and understand the underlying mechanism.Results: The irradiated cancer cells exhibited hotspots for the de novo 8502–12966 single nucleotide variants and 954–1,331 indels on the chromosome. These single nucleotide variants primarily originated from double-stranded break repair errors, as determined using mutation signature analysis. The hotspots partially overlapped with the sites of H3K9 trimethylation, which are regions characterised by a weak capacity for double-stranded break repair.Conclusion: This study highlights the signature and underlying mechanism of radiation on the cancer genome.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Irradiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Whole genome sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancer genome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutation signature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutation hot spot</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Junyan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1440-5538</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaneko, Syuzo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamamoto, Ryuji</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2632-1334</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamaguchi, Shigeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamashita, Riu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okumura, Masayuki</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9842-165X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Motegi, Atsushi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hojo, Hidehiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakamura, Masaki</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4431-8892</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsuchihara, Katsuya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akimoto, Tetsuo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0881-1345</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiotherapy and oncology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">155, Seite 10-16</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710110</subfield><subfield code="w">(DE-600)1500707-8</subfield><subfield code="w">(DE-576)082435731</subfield><subfield code="x">1879-0887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:155</subfield><subfield code="g">pages:10-16</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.81</subfield><subfield code="j">Onkologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.64</subfield><subfield code="j">Radiologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">155</subfield><subfield code="h">10-16</subfield></datafield></record></collection>
|
author |
Kageyama, Shun-Ichiro |
spellingShingle |
Kageyama, Shun-Ichiro ddc 610 bkl 44.81 bkl 44.64 misc Irradiation misc Radiotherapy misc Whole genome sequence misc Cancer genome misc Mutation signature misc Mutation hot spot Identification of the mutation signature of the cancer genome caused by irradiation |
authorStr |
Kageyama, Shun-Ichiro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306710110 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0887 |
topic_title |
610 DE-600 44.81 bkl 44.64 bkl Identification of the mutation signature of the cancer genome caused by irradiation Irradiation Radiotherapy Whole genome sequence Cancer genome Mutation signature Mutation hot spot |
topic |
ddc 610 bkl 44.81 bkl 44.64 misc Irradiation misc Radiotherapy misc Whole genome sequence misc Cancer genome misc Mutation signature misc Mutation hot spot |
topic_unstemmed |
ddc 610 bkl 44.81 bkl 44.64 misc Irradiation misc Radiotherapy misc Whole genome sequence misc Cancer genome misc Mutation signature misc Mutation hot spot |
topic_browse |
ddc 610 bkl 44.81 bkl 44.64 misc Irradiation misc Radiotherapy misc Whole genome sequence misc Cancer genome misc Mutation signature misc Mutation hot spot |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Radiotherapy and oncology |
hierarchy_parent_id |
306710110 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Radiotherapy and oncology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306710110 (DE-600)1500707-8 (DE-576)082435731 |
title |
Identification of the mutation signature of the cancer genome caused by irradiation |
ctrlnum |
(DE-627)ELV005692598 (ELSEVIER)S0167-8140(20)30856-2 |
title_full |
Identification of the mutation signature of the cancer genome caused by irradiation |
author_sort |
Kageyama, Shun-Ichiro |
journal |
Radiotherapy and oncology |
journalStr |
Radiotherapy and oncology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
10 |
author_browse |
Kageyama, Shun-Ichiro Du, Junyan Kaneko, Syuzo Hamamoto, Ryuji Yamaguchi, Shigeo Yamashita, Riu Okumura, Masayuki Motegi, Atsushi Hojo, Hidehiro Nakamura, Masaki Tsuchihara, Katsuya Akimoto, Tetsuo |
container_volume |
155 |
class |
610 DE-600 44.81 bkl 44.64 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kageyama, Shun-Ichiro |
doi_str_mv |
10.1016/j.radonc.2020.10.020 |
normlink |
(ORCID)0000-0003-1440-5538 (ORCID)0000-0002-2632-1334 (ORCID)0000-0002-9842-165X (ORCID)0000-0002-4431-8892 (ORCID)0000-0003-0881-1345 |
normlink_prefix_str_mv |
(orcid)0000-0003-1440-5538 (orcid)0000-0002-2632-1334 (orcid)0000-0002-9842-165X (orcid)0000-0002-4431-8892 (orcid)0000-0003-0881-1345 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
identification of the mutation signature of the cancer genome caused by irradiation |
title_auth |
Identification of the mutation signature of the cancer genome caused by irradiation |
abstract |
Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experimental system to analyse the presence of de novo mutations in the cancer genome of irradiated (60 Gy/20 fr/4 weeks) oesophageal cancer cell lines. Subsequently, we performed whole-genome, chromatin immunoprecipitation, and RNA sequencing using untreated and irradiated samples to assess the damage to the genome caused by radiation and understand the underlying mechanism.Results: The irradiated cancer cells exhibited hotspots for the de novo 8502–12966 single nucleotide variants and 954–1,331 indels on the chromosome. These single nucleotide variants primarily originated from double-stranded break repair errors, as determined using mutation signature analysis. The hotspots partially overlapped with the sites of H3K9 trimethylation, which are regions characterised by a weak capacity for double-stranded break repair.Conclusion: This study highlights the signature and underlying mechanism of radiation on the cancer genome. |
abstractGer |
Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experimental system to analyse the presence of de novo mutations in the cancer genome of irradiated (60 Gy/20 fr/4 weeks) oesophageal cancer cell lines. Subsequently, we performed whole-genome, chromatin immunoprecipitation, and RNA sequencing using untreated and irradiated samples to assess the damage to the genome caused by radiation and understand the underlying mechanism.Results: The irradiated cancer cells exhibited hotspots for the de novo 8502–12966 single nucleotide variants and 954–1,331 indels on the chromosome. These single nucleotide variants primarily originated from double-stranded break repair errors, as determined using mutation signature analysis. The hotspots partially overlapped with the sites of H3K9 trimethylation, which are regions characterised by a weak capacity for double-stranded break repair.Conclusion: This study highlights the signature and underlying mechanism of radiation on the cancer genome. |
abstract_unstemmed |
Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experimental system to analyse the presence of de novo mutations in the cancer genome of irradiated (60 Gy/20 fr/4 weeks) oesophageal cancer cell lines. Subsequently, we performed whole-genome, chromatin immunoprecipitation, and RNA sequencing using untreated and irradiated samples to assess the damage to the genome caused by radiation and understand the underlying mechanism.Results: The irradiated cancer cells exhibited hotspots for the de novo 8502–12966 single nucleotide variants and 954–1,331 indels on the chromosome. These single nucleotide variants primarily originated from double-stranded break repair errors, as determined using mutation signature analysis. The hotspots partially overlapped with the sites of H3K9 trimethylation, which are regions characterised by a weak capacity for double-stranded break repair.Conclusion: This study highlights the signature and underlying mechanism of radiation on the cancer genome. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Identification of the mutation signature of the cancer genome caused by irradiation |
remote_bool |
true |
author2 |
Du, Junyan Kaneko, Syuzo Hamamoto, Ryuji Yamaguchi, Shigeo Yamashita, Riu Okumura, Masayuki Motegi, Atsushi Hojo, Hidehiro Nakamura, Masaki Tsuchihara, Katsuya Akimoto, Tetsuo |
author2Str |
Du, Junyan Kaneko, Syuzo Hamamoto, Ryuji Yamaguchi, Shigeo Yamashita, Riu Okumura, Masayuki Motegi, Atsushi Hojo, Hidehiro Nakamura, Masaki Tsuchihara, Katsuya Akimoto, Tetsuo |
ppnlink |
306710110 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.radonc.2020.10.020 |
up_date |
2024-07-06T18:50:09.482Z |
_version_ |
1803856704420446208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005692598</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150540.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.radonc.2020.10.020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005692598</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-8140(20)30856-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.81</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.64</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kageyama, Shun-Ichiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of the mutation signature of the cancer genome caused by irradiation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and purpose: Ionising radiation causes mutations in the genomes of tumour cells and serves as a potent treatment for cancer. However, the mutation signatures in the cancer genome following ionising radiation have not been documented.Materials and methods: We established an in vitro experimental system to analyse the presence of de novo mutations in the cancer genome of irradiated (60 Gy/20 fr/4 weeks) oesophageal cancer cell lines. Subsequently, we performed whole-genome, chromatin immunoprecipitation, and RNA sequencing using untreated and irradiated samples to assess the damage to the genome caused by radiation and understand the underlying mechanism.Results: The irradiated cancer cells exhibited hotspots for the de novo 8502–12966 single nucleotide variants and 954–1,331 indels on the chromosome. These single nucleotide variants primarily originated from double-stranded break repair errors, as determined using mutation signature analysis. The hotspots partially overlapped with the sites of H3K9 trimethylation, which are regions characterised by a weak capacity for double-stranded break repair.Conclusion: This study highlights the signature and underlying mechanism of radiation on the cancer genome.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Irradiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Whole genome sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancer genome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutation signature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutation hot spot</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Junyan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1440-5538</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaneko, Syuzo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamamoto, Ryuji</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2632-1334</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamaguchi, Shigeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamashita, Riu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okumura, Masayuki</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9842-165X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Motegi, Atsushi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hojo, Hidehiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakamura, Masaki</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4431-8892</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsuchihara, Katsuya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akimoto, Tetsuo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0881-1345</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiotherapy and oncology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">155, Seite 10-16</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710110</subfield><subfield code="w">(DE-600)1500707-8</subfield><subfield code="w">(DE-576)082435731</subfield><subfield code="x">1879-0887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:155</subfield><subfield code="g">pages:10-16</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.81</subfield><subfield code="j">Onkologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.64</subfield><subfield code="j">Radiologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">155</subfield><subfield code="h">10-16</subfield></datafield></record></collection>
|
score |
7.4018955 |