Enhancement of heat transfer in a combined solar air heating and water heater system
This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened usin...
Ausführliche Beschreibung
Autor*in: |
Ganesh Kumar, P. [verfasserIn] Balaji, K. [verfasserIn] Sakthivadivel, D. [verfasserIn] Vigneswaran, V.S. [verfasserIn] Velraj, R. [verfasserIn] Kim, Sung Chul [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Energy - Amsterdam [u.a.] : Elsevier Science, 1976, 221 |
---|---|
Übergeordnetes Werk: |
volume:221 |
DOI / URN: |
10.1016/j.energy.2021.119805 |
---|
Katalog-ID: |
ELV005706742 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005706742 | ||
003 | DE-627 | ||
005 | 20231125093052.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.energy.2021.119805 |2 doi | |
035 | |a (DE-627)ELV005706742 | ||
035 | |a (ELSEVIER)S0360-5442(21)00054-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 50.70 |2 bkl | ||
100 | 1 | |a Ganesh Kumar, P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancement of heat transfer in a combined solar air heating and water heater system |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened using a pressurized shot-blasting technique. Furthermore, the convective heat transfer performance was enhanced using solar glycol (SG) with multi-walled carbon nanotube (MWCNT)-based nanofluids. The performance of this novel combined system for a total collector area of 2 m2 was investigated experimentally. The SG/MWCNT-based nanofluid was prepared by adding a surfactant (i.e., gum arabic) at concentrations of 0.1 and 0.2 vol %. Based on the results of the experimental investigation, it was inferred that the collector efficiency is directly proportional to the volume percentage of the nanomaterials. An average temperature difference of 14.54 °C was achieved in the solar collector, whereas a maximum temperature of 18.32 °C was obtained for 0.2 vol % of MWCNT at a mass flow rate of 0.01 kg/s. Moreover, the maximum thermal efficiency of 51.03% was attained for a 0.2 vol % SG/MWCNT-based nanofluid at a mass flow rate of 0.01 kg/s. | ||
650 | 4 | |a Shot-blasting | |
650 | 4 | |a Solar water heater | |
650 | 4 | |a Solar air heater | |
650 | 4 | |a Multiwall carbon nanotube | |
650 | 4 | |a Pumping power | |
700 | 1 | |a Balaji, K. |e verfasserin |4 aut | |
700 | 1 | |a Sakthivadivel, D. |e verfasserin |4 aut | |
700 | 1 | |a Vigneswaran, V.S. |e verfasserin |4 aut | |
700 | 1 | |a Velraj, R. |e verfasserin |4 aut | |
700 | 1 | |a Kim, Sung Chul |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy |d Amsterdam [u.a.] : Elsevier Science, 1976 |g 221 |h Online-Ressource |w (DE-627)320597903 |w (DE-600)2019804-8 |w (DE-576)116451815 |x 1873-6785 |7 nnns |
773 | 1 | 8 | |g volume:221 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 221 |
author_variant |
k p g kp kpg k b kb d s ds v v vv r v rv s c k sc sck |
---|---|
matchkey_str |
article:18736785:2021----::nacmnohataseiaobndoaaretn |
hierarchy_sort_str |
2021 |
bklnumber |
50.70 |
publishDate |
2021 |
allfields |
10.1016/j.energy.2021.119805 doi (DE-627)ELV005706742 (ELSEVIER)S0360-5442(21)00054-2 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Ganesh Kumar, P. verfasserin aut Enhancement of heat transfer in a combined solar air heating and water heater system 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened using a pressurized shot-blasting technique. Furthermore, the convective heat transfer performance was enhanced using solar glycol (SG) with multi-walled carbon nanotube (MWCNT)-based nanofluids. The performance of this novel combined system for a total collector area of 2 m2 was investigated experimentally. The SG/MWCNT-based nanofluid was prepared by adding a surfactant (i.e., gum arabic) at concentrations of 0.1 and 0.2 vol %. Based on the results of the experimental investigation, it was inferred that the collector efficiency is directly proportional to the volume percentage of the nanomaterials. An average temperature difference of 14.54 °C was achieved in the solar collector, whereas a maximum temperature of 18.32 °C was obtained for 0.2 vol % of MWCNT at a mass flow rate of 0.01 kg/s. Moreover, the maximum thermal efficiency of 51.03% was attained for a 0.2 vol % SG/MWCNT-based nanofluid at a mass flow rate of 0.01 kg/s. Shot-blasting Solar water heater Solar air heater Multiwall carbon nanotube Pumping power Balaji, K. verfasserin aut Sakthivadivel, D. verfasserin aut Vigneswaran, V.S. verfasserin aut Velraj, R. verfasserin aut Kim, Sung Chul verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 221 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines VZ AR 221 |
spelling |
10.1016/j.energy.2021.119805 doi (DE-627)ELV005706742 (ELSEVIER)S0360-5442(21)00054-2 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Ganesh Kumar, P. verfasserin aut Enhancement of heat transfer in a combined solar air heating and water heater system 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened using a pressurized shot-blasting technique. Furthermore, the convective heat transfer performance was enhanced using solar glycol (SG) with multi-walled carbon nanotube (MWCNT)-based nanofluids. The performance of this novel combined system for a total collector area of 2 m2 was investigated experimentally. The SG/MWCNT-based nanofluid was prepared by adding a surfactant (i.e., gum arabic) at concentrations of 0.1 and 0.2 vol %. Based on the results of the experimental investigation, it was inferred that the collector efficiency is directly proportional to the volume percentage of the nanomaterials. An average temperature difference of 14.54 °C was achieved in the solar collector, whereas a maximum temperature of 18.32 °C was obtained for 0.2 vol % of MWCNT at a mass flow rate of 0.01 kg/s. Moreover, the maximum thermal efficiency of 51.03% was attained for a 0.2 vol % SG/MWCNT-based nanofluid at a mass flow rate of 0.01 kg/s. Shot-blasting Solar water heater Solar air heater Multiwall carbon nanotube Pumping power Balaji, K. verfasserin aut Sakthivadivel, D. verfasserin aut Vigneswaran, V.S. verfasserin aut Velraj, R. verfasserin aut Kim, Sung Chul verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 221 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines VZ AR 221 |
allfields_unstemmed |
10.1016/j.energy.2021.119805 doi (DE-627)ELV005706742 (ELSEVIER)S0360-5442(21)00054-2 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Ganesh Kumar, P. verfasserin aut Enhancement of heat transfer in a combined solar air heating and water heater system 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened using a pressurized shot-blasting technique. Furthermore, the convective heat transfer performance was enhanced using solar glycol (SG) with multi-walled carbon nanotube (MWCNT)-based nanofluids. The performance of this novel combined system for a total collector area of 2 m2 was investigated experimentally. The SG/MWCNT-based nanofluid was prepared by adding a surfactant (i.e., gum arabic) at concentrations of 0.1 and 0.2 vol %. Based on the results of the experimental investigation, it was inferred that the collector efficiency is directly proportional to the volume percentage of the nanomaterials. An average temperature difference of 14.54 °C was achieved in the solar collector, whereas a maximum temperature of 18.32 °C was obtained for 0.2 vol % of MWCNT at a mass flow rate of 0.01 kg/s. Moreover, the maximum thermal efficiency of 51.03% was attained for a 0.2 vol % SG/MWCNT-based nanofluid at a mass flow rate of 0.01 kg/s. Shot-blasting Solar water heater Solar air heater Multiwall carbon nanotube Pumping power Balaji, K. verfasserin aut Sakthivadivel, D. verfasserin aut Vigneswaran, V.S. verfasserin aut Velraj, R. verfasserin aut Kim, Sung Chul verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 221 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines VZ AR 221 |
allfieldsGer |
10.1016/j.energy.2021.119805 doi (DE-627)ELV005706742 (ELSEVIER)S0360-5442(21)00054-2 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Ganesh Kumar, P. verfasserin aut Enhancement of heat transfer in a combined solar air heating and water heater system 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened using a pressurized shot-blasting technique. Furthermore, the convective heat transfer performance was enhanced using solar glycol (SG) with multi-walled carbon nanotube (MWCNT)-based nanofluids. The performance of this novel combined system for a total collector area of 2 m2 was investigated experimentally. The SG/MWCNT-based nanofluid was prepared by adding a surfactant (i.e., gum arabic) at concentrations of 0.1 and 0.2 vol %. Based on the results of the experimental investigation, it was inferred that the collector efficiency is directly proportional to the volume percentage of the nanomaterials. An average temperature difference of 14.54 °C was achieved in the solar collector, whereas a maximum temperature of 18.32 °C was obtained for 0.2 vol % of MWCNT at a mass flow rate of 0.01 kg/s. Moreover, the maximum thermal efficiency of 51.03% was attained for a 0.2 vol % SG/MWCNT-based nanofluid at a mass flow rate of 0.01 kg/s. Shot-blasting Solar water heater Solar air heater Multiwall carbon nanotube Pumping power Balaji, K. verfasserin aut Sakthivadivel, D. verfasserin aut Vigneswaran, V.S. verfasserin aut Velraj, R. verfasserin aut Kim, Sung Chul verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 221 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines VZ AR 221 |
allfieldsSound |
10.1016/j.energy.2021.119805 doi (DE-627)ELV005706742 (ELSEVIER)S0360-5442(21)00054-2 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Ganesh Kumar, P. verfasserin aut Enhancement of heat transfer in a combined solar air heating and water heater system 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened using a pressurized shot-blasting technique. Furthermore, the convective heat transfer performance was enhanced using solar glycol (SG) with multi-walled carbon nanotube (MWCNT)-based nanofluids. The performance of this novel combined system for a total collector area of 2 m2 was investigated experimentally. The SG/MWCNT-based nanofluid was prepared by adding a surfactant (i.e., gum arabic) at concentrations of 0.1 and 0.2 vol %. Based on the results of the experimental investigation, it was inferred that the collector efficiency is directly proportional to the volume percentage of the nanomaterials. An average temperature difference of 14.54 °C was achieved in the solar collector, whereas a maximum temperature of 18.32 °C was obtained for 0.2 vol % of MWCNT at a mass flow rate of 0.01 kg/s. Moreover, the maximum thermal efficiency of 51.03% was attained for a 0.2 vol % SG/MWCNT-based nanofluid at a mass flow rate of 0.01 kg/s. Shot-blasting Solar water heater Solar air heater Multiwall carbon nanotube Pumping power Balaji, K. verfasserin aut Sakthivadivel, D. verfasserin aut Vigneswaran, V.S. verfasserin aut Velraj, R. verfasserin aut Kim, Sung Chul verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 221 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:221 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines VZ AR 221 |
language |
English |
source |
Enthalten in Energy 221 volume:221 |
sourceStr |
Enthalten in Energy 221 volume:221 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Shot-blasting Solar water heater Solar air heater Multiwall carbon nanotube Pumping power |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Energy |
authorswithroles_txt_mv |
Ganesh Kumar, P. @@aut@@ Balaji, K. @@aut@@ Sakthivadivel, D. @@aut@@ Vigneswaran, V.S. @@aut@@ Velraj, R. @@aut@@ Kim, Sung Chul @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320597903 |
dewey-sort |
3600 |
id |
ELV005706742 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005706742</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231125093052.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2021.119805</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005706742</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(21)00054-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ganesh Kumar, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancement of heat transfer in a combined solar air heating and water heater system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened using a pressurized shot-blasting technique. Furthermore, the convective heat transfer performance was enhanced using solar glycol (SG) with multi-walled carbon nanotube (MWCNT)-based nanofluids. The performance of this novel combined system for a total collector area of 2 m2 was investigated experimentally. The SG/MWCNT-based nanofluid was prepared by adding a surfactant (i.e., gum arabic) at concentrations of 0.1 and 0.2 vol %. Based on the results of the experimental investigation, it was inferred that the collector efficiency is directly proportional to the volume percentage of the nanomaterials. An average temperature difference of 14.54 °C was achieved in the solar collector, whereas a maximum temperature of 18.32 °C was obtained for 0.2 vol % of MWCNT at a mass flow rate of 0.01 kg/s. Moreover, the maximum thermal efficiency of 51.03% was attained for a 0.2 vol % SG/MWCNT-based nanofluid at a mass flow rate of 0.01 kg/s.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shot-blasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar water heater</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar air heater</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiwall carbon nanotube</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pumping power</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balaji, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sakthivadivel, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vigneswaran, V.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Velraj, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Sung Chul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">221</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">221</subfield></datafield></record></collection>
|
author |
Ganesh Kumar, P. |
spellingShingle |
Ganesh Kumar, P. ddc 600 bkl 50.70 misc Shot-blasting misc Solar water heater misc Solar air heater misc Multiwall carbon nanotube misc Pumping power Enhancement of heat transfer in a combined solar air heating and water heater system |
authorStr |
Ganesh Kumar, P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320597903 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-6785 |
topic_title |
600 VZ 50.70 bkl Enhancement of heat transfer in a combined solar air heating and water heater system Shot-blasting Solar water heater Solar air heater Multiwall carbon nanotube Pumping power |
topic |
ddc 600 bkl 50.70 misc Shot-blasting misc Solar water heater misc Solar air heater misc Multiwall carbon nanotube misc Pumping power |
topic_unstemmed |
ddc 600 bkl 50.70 misc Shot-blasting misc Solar water heater misc Solar air heater misc Multiwall carbon nanotube misc Pumping power |
topic_browse |
ddc 600 bkl 50.70 misc Shot-blasting misc Solar water heater misc Solar air heater misc Multiwall carbon nanotube misc Pumping power |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy |
hierarchy_parent_id |
320597903 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 |
title |
Enhancement of heat transfer in a combined solar air heating and water heater system |
ctrlnum |
(DE-627)ELV005706742 (ELSEVIER)S0360-5442(21)00054-2 |
title_full |
Enhancement of heat transfer in a combined solar air heating and water heater system |
author_sort |
Ganesh Kumar, P. |
journal |
Energy |
journalStr |
Energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Ganesh Kumar, P. Balaji, K. Sakthivadivel, D. Vigneswaran, V.S. Velraj, R. Kim, Sung Chul |
container_volume |
221 |
class |
600 VZ 50.70 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ganesh Kumar, P. |
doi_str_mv |
10.1016/j.energy.2021.119805 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
enhancement of heat transfer in a combined solar air heating and water heater system |
title_auth |
Enhancement of heat transfer in a combined solar air heating and water heater system |
abstract |
This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened using a pressurized shot-blasting technique. Furthermore, the convective heat transfer performance was enhanced using solar glycol (SG) with multi-walled carbon nanotube (MWCNT)-based nanofluids. The performance of this novel combined system for a total collector area of 2 m2 was investigated experimentally. The SG/MWCNT-based nanofluid was prepared by adding a surfactant (i.e., gum arabic) at concentrations of 0.1 and 0.2 vol %. Based on the results of the experimental investigation, it was inferred that the collector efficiency is directly proportional to the volume percentage of the nanomaterials. An average temperature difference of 14.54 °C was achieved in the solar collector, whereas a maximum temperature of 18.32 °C was obtained for 0.2 vol % of MWCNT at a mass flow rate of 0.01 kg/s. Moreover, the maximum thermal efficiency of 51.03% was attained for a 0.2 vol % SG/MWCNT-based nanofluid at a mass flow rate of 0.01 kg/s. |
abstractGer |
This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened using a pressurized shot-blasting technique. Furthermore, the convective heat transfer performance was enhanced using solar glycol (SG) with multi-walled carbon nanotube (MWCNT)-based nanofluids. The performance of this novel combined system for a total collector area of 2 m2 was investigated experimentally. The SG/MWCNT-based nanofluid was prepared by adding a surfactant (i.e., gum arabic) at concentrations of 0.1 and 0.2 vol %. Based on the results of the experimental investigation, it was inferred that the collector efficiency is directly proportional to the volume percentage of the nanomaterials. An average temperature difference of 14.54 °C was achieved in the solar collector, whereas a maximum temperature of 18.32 °C was obtained for 0.2 vol % of MWCNT at a mass flow rate of 0.01 kg/s. Moreover, the maximum thermal efficiency of 51.03% was attained for a 0.2 vol % SG/MWCNT-based nanofluid at a mass flow rate of 0.01 kg/s. |
abstract_unstemmed |
This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened using a pressurized shot-blasting technique. Furthermore, the convective heat transfer performance was enhanced using solar glycol (SG) with multi-walled carbon nanotube (MWCNT)-based nanofluids. The performance of this novel combined system for a total collector area of 2 m2 was investigated experimentally. The SG/MWCNT-based nanofluid was prepared by adding a surfactant (i.e., gum arabic) at concentrations of 0.1 and 0.2 vol %. Based on the results of the experimental investigation, it was inferred that the collector efficiency is directly proportional to the volume percentage of the nanomaterials. An average temperature difference of 14.54 °C was achieved in the solar collector, whereas a maximum temperature of 18.32 °C was obtained for 0.2 vol % of MWCNT at a mass flow rate of 0.01 kg/s. Moreover, the maximum thermal efficiency of 51.03% was attained for a 0.2 vol % SG/MWCNT-based nanofluid at a mass flow rate of 0.01 kg/s. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Enhancement of heat transfer in a combined solar air heating and water heater system |
remote_bool |
true |
author2 |
Balaji, K. Sakthivadivel, D. Vigneswaran, V.S. Velraj, R. Kim, Sung Chul |
author2Str |
Balaji, K. Sakthivadivel, D. Vigneswaran, V.S. Velraj, R. Kim, Sung Chul |
ppnlink |
320597903 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.energy.2021.119805 |
up_date |
2024-07-06T18:53:06.244Z |
_version_ |
1803856889769885696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005706742</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231125093052.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2021.119805</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005706742</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(21)00054-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ganesh Kumar, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancement of heat transfer in a combined solar air heating and water heater system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents an innovative hybrid system that serves the dual purpose of heating air and water simultaneously. To achieve an enhancement in thermal performance, the rectangular aluminum duct’s inner surface in the air heater and the copper absorber plate in the water heater was roughened using a pressurized shot-blasting technique. Furthermore, the convective heat transfer performance was enhanced using solar glycol (SG) with multi-walled carbon nanotube (MWCNT)-based nanofluids. The performance of this novel combined system for a total collector area of 2 m2 was investigated experimentally. The SG/MWCNT-based nanofluid was prepared by adding a surfactant (i.e., gum arabic) at concentrations of 0.1 and 0.2 vol %. Based on the results of the experimental investigation, it was inferred that the collector efficiency is directly proportional to the volume percentage of the nanomaterials. An average temperature difference of 14.54 °C was achieved in the solar collector, whereas a maximum temperature of 18.32 °C was obtained for 0.2 vol % of MWCNT at a mass flow rate of 0.01 kg/s. Moreover, the maximum thermal efficiency of 51.03% was attained for a 0.2 vol % SG/MWCNT-based nanofluid at a mass flow rate of 0.01 kg/s.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shot-blasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar water heater</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar air heater</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiwall carbon nanotube</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pumping power</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balaji, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sakthivadivel, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vigneswaran, V.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Velraj, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Sung Chul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">221</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">221</subfield></datafield></record></collection>
|
score |
7.4019136 |