Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties
Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop gre...
Ausführliche Beschreibung
Autor*in: |
Gupta, Rainy [verfasserIn] Tomar, Akshay Singh [verfasserIn] Mishra, Deepti [verfasserIn] Sanghi, Sunil Kumar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Microporous and mesoporous materials - Amsterdam [u.a.] : Elsevier, 1998, 317 |
---|---|
Übergeordnetes Werk: |
volume:317 |
DOI / URN: |
10.1016/j.micromeso.2021.110995 |
---|
Katalog-ID: |
ELV005740398 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005740398 | ||
003 | DE-627 | ||
005 | 20230524124911.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.micromeso.2021.110995 |2 doi | |
035 | |a (DE-627)ELV005740398 | ||
035 | |a (ELSEVIER)S1387-1811(21)00121-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 38.30 |2 bkl | ||
084 | |a 35.68 |2 bkl | ||
084 | |a 33.61 |2 bkl | ||
084 | |a 35.90 |2 bkl | ||
084 | |a 51.45 |2 bkl | ||
100 | 1 | |a Gupta, Rainy |e verfasserin |0 (orcid)0000-0002-9767-0064 |4 aut | |
245 | 1 | 0 | |a Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop green and sustainable geopolymer coating material for advanced application, we studied geopolymeric coating of varying Na/Si ratio and alkaline molarities and their long term corrosion resistant properties on mild steel to protect it from surface corrosion. Chemical characterization was performed using combination of powerful characterization tools, more specifically mineralogical assessment by X-ray diffractometer, bonding arrangements by Fourier transform infrared spectroscopy and microstructural details by Field emission scanning electron microscopy techniques. Time of flight secondary ion mass spectroscopy was also used as novel characterization approach to envision the coating-substrate interface and for elemental mapping at the interface which delivered useful information about occurrence of strong covalent bonds between Si–O–Fe in the form of Fe2OSi+ mass fragment with m/z ratio 156. The material was further investigated in terms of adhesion strength and water/salt resistant, following accelerated salt fog test by ASTM codes. Geopolymer with varying Na/Si ratio and alkaline molarity exhibited change in XRD amorphicity and microstructure. Results also displayed that even at low Na/Si ratio geopolymeric coating performs high adhesion with iron with no considerable change in corrosion resistant properties. The maximum adhesion of developed material with mild steel was 14.68 M.Pa. after 28 day ambient curing which presented its functional suitability. Coating sustained point load upto 5 kgs and showed adequate water and salt resistance upto 3 months. In accelerated corrosion environment, optimized geopolymer coating displayed adequate corrosion resistance and displayed rust rating 9. Overall we obtained an optimized material which is well suited for coating of buried mild steel pipes to replace contemporary cement mortar coating in terms of properties, durability, cost effectiveness and environmental sustainability. | ||
650 | 4 | |a Fly ash | |
650 | 4 | |a Geopolymer cement | |
650 | 4 | |a Coating | |
650 | 4 | |a Interface | |
650 | 4 | |a Adhesion | |
650 | 4 | |a Iron substrate | |
700 | 1 | |a Tomar, Akshay Singh |e verfasserin |4 aut | |
700 | 1 | |a Mishra, Deepti |e verfasserin |4 aut | |
700 | 1 | |a Sanghi, Sunil Kumar |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Microporous and mesoporous materials |d Amsterdam [u.a.] : Elsevier, 1998 |g 317 |h Online-Ressource |w (DE-627)318368277 |w (DE-600)2012505-7 |w (DE-576)09529998X |x 1387-1811 |7 nnns |
773 | 1 | 8 | |g volume:317 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.30 |j Mineralogie |
936 | b | k | |a 35.68 |j Organische Verbindungen: Sonstiges |
936 | b | k | |a 33.61 |j Festkörperphysik |
936 | b | k | |a 35.90 |j Festkörperchemie |
936 | b | k | |a 51.45 |j Werkstoffe mit besonderen Eigenschaften |
951 | |a AR | ||
952 | |d 317 |
author_variant |
r g rg a s t as ast d m dm s k s sk sks |
---|---|
matchkey_str |
article:13871811:2021----::utfctdeplmrotnmtradvlpethrceiainnsuyfog |
hierarchy_sort_str |
2021 |
bklnumber |
38.30 35.68 33.61 35.90 51.45 |
publishDate |
2021 |
allfields |
10.1016/j.micromeso.2021.110995 doi (DE-627)ELV005740398 (ELSEVIER)S1387-1811(21)00121-9 DE-627 ger DE-627 rda eng 530 DE-600 38.30 bkl 35.68 bkl 33.61 bkl 35.90 bkl 51.45 bkl Gupta, Rainy verfasserin (orcid)0000-0002-9767-0064 aut Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop green and sustainable geopolymer coating material for advanced application, we studied geopolymeric coating of varying Na/Si ratio and alkaline molarities and their long term corrosion resistant properties on mild steel to protect it from surface corrosion. Chemical characterization was performed using combination of powerful characterization tools, more specifically mineralogical assessment by X-ray diffractometer, bonding arrangements by Fourier transform infrared spectroscopy and microstructural details by Field emission scanning electron microscopy techniques. Time of flight secondary ion mass spectroscopy was also used as novel characterization approach to envision the coating-substrate interface and for elemental mapping at the interface which delivered useful information about occurrence of strong covalent bonds between Si–O–Fe in the form of Fe2OSi+ mass fragment with m/z ratio 156. The material was further investigated in terms of adhesion strength and water/salt resistant, following accelerated salt fog test by ASTM codes. Geopolymer with varying Na/Si ratio and alkaline molarity exhibited change in XRD amorphicity and microstructure. Results also displayed that even at low Na/Si ratio geopolymeric coating performs high adhesion with iron with no considerable change in corrosion resistant properties. The maximum adhesion of developed material with mild steel was 14.68 M.Pa. after 28 day ambient curing which presented its functional suitability. Coating sustained point load upto 5 kgs and showed adequate water and salt resistance upto 3 months. In accelerated corrosion environment, optimized geopolymer coating displayed adequate corrosion resistance and displayed rust rating 9. Overall we obtained an optimized material which is well suited for coating of buried mild steel pipes to replace contemporary cement mortar coating in terms of properties, durability, cost effectiveness and environmental sustainability. Fly ash Geopolymer cement Coating Interface Adhesion Iron substrate Tomar, Akshay Singh verfasserin aut Mishra, Deepti verfasserin aut Sanghi, Sunil Kumar verfasserin aut Enthalten in Microporous and mesoporous materials Amsterdam [u.a.] : Elsevier, 1998 317 Online-Ressource (DE-627)318368277 (DE-600)2012505-7 (DE-576)09529998X 1387-1811 nnns volume:317 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.30 Mineralogie 35.68 Organische Verbindungen: Sonstiges 33.61 Festkörperphysik 35.90 Festkörperchemie 51.45 Werkstoffe mit besonderen Eigenschaften AR 317 |
spelling |
10.1016/j.micromeso.2021.110995 doi (DE-627)ELV005740398 (ELSEVIER)S1387-1811(21)00121-9 DE-627 ger DE-627 rda eng 530 DE-600 38.30 bkl 35.68 bkl 33.61 bkl 35.90 bkl 51.45 bkl Gupta, Rainy verfasserin (orcid)0000-0002-9767-0064 aut Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop green and sustainable geopolymer coating material for advanced application, we studied geopolymeric coating of varying Na/Si ratio and alkaline molarities and their long term corrosion resistant properties on mild steel to protect it from surface corrosion. Chemical characterization was performed using combination of powerful characterization tools, more specifically mineralogical assessment by X-ray diffractometer, bonding arrangements by Fourier transform infrared spectroscopy and microstructural details by Field emission scanning electron microscopy techniques. Time of flight secondary ion mass spectroscopy was also used as novel characterization approach to envision the coating-substrate interface and for elemental mapping at the interface which delivered useful information about occurrence of strong covalent bonds between Si–O–Fe in the form of Fe2OSi+ mass fragment with m/z ratio 156. The material was further investigated in terms of adhesion strength and water/salt resistant, following accelerated salt fog test by ASTM codes. Geopolymer with varying Na/Si ratio and alkaline molarity exhibited change in XRD amorphicity and microstructure. Results also displayed that even at low Na/Si ratio geopolymeric coating performs high adhesion with iron with no considerable change in corrosion resistant properties. The maximum adhesion of developed material with mild steel was 14.68 M.Pa. after 28 day ambient curing which presented its functional suitability. Coating sustained point load upto 5 kgs and showed adequate water and salt resistance upto 3 months. In accelerated corrosion environment, optimized geopolymer coating displayed adequate corrosion resistance and displayed rust rating 9. Overall we obtained an optimized material which is well suited for coating of buried mild steel pipes to replace contemporary cement mortar coating in terms of properties, durability, cost effectiveness and environmental sustainability. Fly ash Geopolymer cement Coating Interface Adhesion Iron substrate Tomar, Akshay Singh verfasserin aut Mishra, Deepti verfasserin aut Sanghi, Sunil Kumar verfasserin aut Enthalten in Microporous and mesoporous materials Amsterdam [u.a.] : Elsevier, 1998 317 Online-Ressource (DE-627)318368277 (DE-600)2012505-7 (DE-576)09529998X 1387-1811 nnns volume:317 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.30 Mineralogie 35.68 Organische Verbindungen: Sonstiges 33.61 Festkörperphysik 35.90 Festkörperchemie 51.45 Werkstoffe mit besonderen Eigenschaften AR 317 |
allfields_unstemmed |
10.1016/j.micromeso.2021.110995 doi (DE-627)ELV005740398 (ELSEVIER)S1387-1811(21)00121-9 DE-627 ger DE-627 rda eng 530 DE-600 38.30 bkl 35.68 bkl 33.61 bkl 35.90 bkl 51.45 bkl Gupta, Rainy verfasserin (orcid)0000-0002-9767-0064 aut Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop green and sustainable geopolymer coating material for advanced application, we studied geopolymeric coating of varying Na/Si ratio and alkaline molarities and their long term corrosion resistant properties on mild steel to protect it from surface corrosion. Chemical characterization was performed using combination of powerful characterization tools, more specifically mineralogical assessment by X-ray diffractometer, bonding arrangements by Fourier transform infrared spectroscopy and microstructural details by Field emission scanning electron microscopy techniques. Time of flight secondary ion mass spectroscopy was also used as novel characterization approach to envision the coating-substrate interface and for elemental mapping at the interface which delivered useful information about occurrence of strong covalent bonds between Si–O–Fe in the form of Fe2OSi+ mass fragment with m/z ratio 156. The material was further investigated in terms of adhesion strength and water/salt resistant, following accelerated salt fog test by ASTM codes. Geopolymer with varying Na/Si ratio and alkaline molarity exhibited change in XRD amorphicity and microstructure. Results also displayed that even at low Na/Si ratio geopolymeric coating performs high adhesion with iron with no considerable change in corrosion resistant properties. The maximum adhesion of developed material with mild steel was 14.68 M.Pa. after 28 day ambient curing which presented its functional suitability. Coating sustained point load upto 5 kgs and showed adequate water and salt resistance upto 3 months. In accelerated corrosion environment, optimized geopolymer coating displayed adequate corrosion resistance and displayed rust rating 9. Overall we obtained an optimized material which is well suited for coating of buried mild steel pipes to replace contemporary cement mortar coating in terms of properties, durability, cost effectiveness and environmental sustainability. Fly ash Geopolymer cement Coating Interface Adhesion Iron substrate Tomar, Akshay Singh verfasserin aut Mishra, Deepti verfasserin aut Sanghi, Sunil Kumar verfasserin aut Enthalten in Microporous and mesoporous materials Amsterdam [u.a.] : Elsevier, 1998 317 Online-Ressource (DE-627)318368277 (DE-600)2012505-7 (DE-576)09529998X 1387-1811 nnns volume:317 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.30 Mineralogie 35.68 Organische Verbindungen: Sonstiges 33.61 Festkörperphysik 35.90 Festkörperchemie 51.45 Werkstoffe mit besonderen Eigenschaften AR 317 |
allfieldsGer |
10.1016/j.micromeso.2021.110995 doi (DE-627)ELV005740398 (ELSEVIER)S1387-1811(21)00121-9 DE-627 ger DE-627 rda eng 530 DE-600 38.30 bkl 35.68 bkl 33.61 bkl 35.90 bkl 51.45 bkl Gupta, Rainy verfasserin (orcid)0000-0002-9767-0064 aut Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop green and sustainable geopolymer coating material for advanced application, we studied geopolymeric coating of varying Na/Si ratio and alkaline molarities and their long term corrosion resistant properties on mild steel to protect it from surface corrosion. Chemical characterization was performed using combination of powerful characterization tools, more specifically mineralogical assessment by X-ray diffractometer, bonding arrangements by Fourier transform infrared spectroscopy and microstructural details by Field emission scanning electron microscopy techniques. Time of flight secondary ion mass spectroscopy was also used as novel characterization approach to envision the coating-substrate interface and for elemental mapping at the interface which delivered useful information about occurrence of strong covalent bonds between Si–O–Fe in the form of Fe2OSi+ mass fragment with m/z ratio 156. The material was further investigated in terms of adhesion strength and water/salt resistant, following accelerated salt fog test by ASTM codes. Geopolymer with varying Na/Si ratio and alkaline molarity exhibited change in XRD amorphicity and microstructure. Results also displayed that even at low Na/Si ratio geopolymeric coating performs high adhesion with iron with no considerable change in corrosion resistant properties. The maximum adhesion of developed material with mild steel was 14.68 M.Pa. after 28 day ambient curing which presented its functional suitability. Coating sustained point load upto 5 kgs and showed adequate water and salt resistance upto 3 months. In accelerated corrosion environment, optimized geopolymer coating displayed adequate corrosion resistance and displayed rust rating 9. Overall we obtained an optimized material which is well suited for coating of buried mild steel pipes to replace contemporary cement mortar coating in terms of properties, durability, cost effectiveness and environmental sustainability. Fly ash Geopolymer cement Coating Interface Adhesion Iron substrate Tomar, Akshay Singh verfasserin aut Mishra, Deepti verfasserin aut Sanghi, Sunil Kumar verfasserin aut Enthalten in Microporous and mesoporous materials Amsterdam [u.a.] : Elsevier, 1998 317 Online-Ressource (DE-627)318368277 (DE-600)2012505-7 (DE-576)09529998X 1387-1811 nnns volume:317 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.30 Mineralogie 35.68 Organische Verbindungen: Sonstiges 33.61 Festkörperphysik 35.90 Festkörperchemie 51.45 Werkstoffe mit besonderen Eigenschaften AR 317 |
allfieldsSound |
10.1016/j.micromeso.2021.110995 doi (DE-627)ELV005740398 (ELSEVIER)S1387-1811(21)00121-9 DE-627 ger DE-627 rda eng 530 DE-600 38.30 bkl 35.68 bkl 33.61 bkl 35.90 bkl 51.45 bkl Gupta, Rainy verfasserin (orcid)0000-0002-9767-0064 aut Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop green and sustainable geopolymer coating material for advanced application, we studied geopolymeric coating of varying Na/Si ratio and alkaline molarities and their long term corrosion resistant properties on mild steel to protect it from surface corrosion. Chemical characterization was performed using combination of powerful characterization tools, more specifically mineralogical assessment by X-ray diffractometer, bonding arrangements by Fourier transform infrared spectroscopy and microstructural details by Field emission scanning electron microscopy techniques. Time of flight secondary ion mass spectroscopy was also used as novel characterization approach to envision the coating-substrate interface and for elemental mapping at the interface which delivered useful information about occurrence of strong covalent bonds between Si–O–Fe in the form of Fe2OSi+ mass fragment with m/z ratio 156. The material was further investigated in terms of adhesion strength and water/salt resistant, following accelerated salt fog test by ASTM codes. Geopolymer with varying Na/Si ratio and alkaline molarity exhibited change in XRD amorphicity and microstructure. Results also displayed that even at low Na/Si ratio geopolymeric coating performs high adhesion with iron with no considerable change in corrosion resistant properties. The maximum adhesion of developed material with mild steel was 14.68 M.Pa. after 28 day ambient curing which presented its functional suitability. Coating sustained point load upto 5 kgs and showed adequate water and salt resistance upto 3 months. In accelerated corrosion environment, optimized geopolymer coating displayed adequate corrosion resistance and displayed rust rating 9. Overall we obtained an optimized material which is well suited for coating of buried mild steel pipes to replace contemporary cement mortar coating in terms of properties, durability, cost effectiveness and environmental sustainability. Fly ash Geopolymer cement Coating Interface Adhesion Iron substrate Tomar, Akshay Singh verfasserin aut Mishra, Deepti verfasserin aut Sanghi, Sunil Kumar verfasserin aut Enthalten in Microporous and mesoporous materials Amsterdam [u.a.] : Elsevier, 1998 317 Online-Ressource (DE-627)318368277 (DE-600)2012505-7 (DE-576)09529998X 1387-1811 nnns volume:317 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.30 Mineralogie 35.68 Organische Verbindungen: Sonstiges 33.61 Festkörperphysik 35.90 Festkörperchemie 51.45 Werkstoffe mit besonderen Eigenschaften AR 317 |
language |
English |
source |
Enthalten in Microporous and mesoporous materials 317 volume:317 |
sourceStr |
Enthalten in Microporous and mesoporous materials 317 volume:317 |
format_phy_str_mv |
Article |
bklname |
Mineralogie Organische Verbindungen: Sonstiges Festkörperphysik Festkörperchemie Werkstoffe mit besonderen Eigenschaften |
institution |
findex.gbv.de |
topic_facet |
Fly ash Geopolymer cement Coating Interface Adhesion Iron substrate |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Microporous and mesoporous materials |
authorswithroles_txt_mv |
Gupta, Rainy @@aut@@ Tomar, Akshay Singh @@aut@@ Mishra, Deepti @@aut@@ Sanghi, Sunil Kumar @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
318368277 |
dewey-sort |
3530 |
id |
ELV005740398 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005740398</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124911.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.micromeso.2021.110995</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005740398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1387-1811(21)00121-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gupta, Rainy</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9767-0064</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop green and sustainable geopolymer coating material for advanced application, we studied geopolymeric coating of varying Na/Si ratio and alkaline molarities and their long term corrosion resistant properties on mild steel to protect it from surface corrosion. Chemical characterization was performed using combination of powerful characterization tools, more specifically mineralogical assessment by X-ray diffractometer, bonding arrangements by Fourier transform infrared spectroscopy and microstructural details by Field emission scanning electron microscopy techniques. Time of flight secondary ion mass spectroscopy was also used as novel characterization approach to envision the coating-substrate interface and for elemental mapping at the interface which delivered useful information about occurrence of strong covalent bonds between Si–O–Fe in the form of Fe2OSi+ mass fragment with m/z ratio 156. The material was further investigated in terms of adhesion strength and water/salt resistant, following accelerated salt fog test by ASTM codes. Geopolymer with varying Na/Si ratio and alkaline molarity exhibited change in XRD amorphicity and microstructure. Results also displayed that even at low Na/Si ratio geopolymeric coating performs high adhesion with iron with no considerable change in corrosion resistant properties. The maximum adhesion of developed material with mild steel was 14.68 M.Pa. after 28 day ambient curing which presented its functional suitability. Coating sustained point load upto 5 kgs and showed adequate water and salt resistance upto 3 months. In accelerated corrosion environment, optimized geopolymer coating displayed adequate corrosion resistance and displayed rust rating 9. Overall we obtained an optimized material which is well suited for coating of buried mild steel pipes to replace contemporary cement mortar coating in terms of properties, durability, cost effectiveness and environmental sustainability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fly ash</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geopolymer cement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adhesion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron substrate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomar, Akshay Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mishra, Deepti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanghi, Sunil Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microporous and mesoporous materials</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1998</subfield><subfield code="g">317</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)318368277</subfield><subfield code="w">(DE-600)2012505-7</subfield><subfield code="w">(DE-576)09529998X</subfield><subfield code="x">1387-1811</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.30</subfield><subfield code="j">Mineralogie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.68</subfield><subfield code="j">Organische Verbindungen: Sonstiges</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">317</subfield></datafield></record></collection>
|
author |
Gupta, Rainy |
spellingShingle |
Gupta, Rainy ddc 530 bkl 38.30 bkl 35.68 bkl 33.61 bkl 35.90 bkl 51.45 misc Fly ash misc Geopolymer cement misc Coating misc Interface misc Adhesion misc Iron substrate Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties |
authorStr |
Gupta, Rainy |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)318368277 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1387-1811 |
topic_title |
530 DE-600 38.30 bkl 35.68 bkl 33.61 bkl 35.90 bkl 51.45 bkl Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties Fly ash Geopolymer cement Coating Interface Adhesion Iron substrate |
topic |
ddc 530 bkl 38.30 bkl 35.68 bkl 33.61 bkl 35.90 bkl 51.45 misc Fly ash misc Geopolymer cement misc Coating misc Interface misc Adhesion misc Iron substrate |
topic_unstemmed |
ddc 530 bkl 38.30 bkl 35.68 bkl 33.61 bkl 35.90 bkl 51.45 misc Fly ash misc Geopolymer cement misc Coating misc Interface misc Adhesion misc Iron substrate |
topic_browse |
ddc 530 bkl 38.30 bkl 35.68 bkl 33.61 bkl 35.90 bkl 51.45 misc Fly ash misc Geopolymer cement misc Coating misc Interface misc Adhesion misc Iron substrate |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microporous and mesoporous materials |
hierarchy_parent_id |
318368277 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Microporous and mesoporous materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)318368277 (DE-600)2012505-7 (DE-576)09529998X |
title |
Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties |
ctrlnum |
(DE-627)ELV005740398 (ELSEVIER)S1387-1811(21)00121-9 |
title_full |
Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties |
author_sort |
Gupta, Rainy |
journal |
Microporous and mesoporous materials |
journalStr |
Microporous and mesoporous materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Gupta, Rainy Tomar, Akshay Singh Mishra, Deepti Sanghi, Sunil Kumar |
container_volume |
317 |
class |
530 DE-600 38.30 bkl 35.68 bkl 33.61 bkl 35.90 bkl 51.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gupta, Rainy |
doi_str_mv |
10.1016/j.micromeso.2021.110995 |
normlink |
(ORCID)0000-0002-9767-0064 |
normlink_prefix_str_mv |
(orcid)0000-0002-9767-0064 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
multifaceted geopolymer coating: material development, characterization and study of long term anti-corrosive properties |
title_auth |
Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties |
abstract |
Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop green and sustainable geopolymer coating material for advanced application, we studied geopolymeric coating of varying Na/Si ratio and alkaline molarities and their long term corrosion resistant properties on mild steel to protect it from surface corrosion. Chemical characterization was performed using combination of powerful characterization tools, more specifically mineralogical assessment by X-ray diffractometer, bonding arrangements by Fourier transform infrared spectroscopy and microstructural details by Field emission scanning electron microscopy techniques. Time of flight secondary ion mass spectroscopy was also used as novel characterization approach to envision the coating-substrate interface and for elemental mapping at the interface which delivered useful information about occurrence of strong covalent bonds between Si–O–Fe in the form of Fe2OSi+ mass fragment with m/z ratio 156. The material was further investigated in terms of adhesion strength and water/salt resistant, following accelerated salt fog test by ASTM codes. Geopolymer with varying Na/Si ratio and alkaline molarity exhibited change in XRD amorphicity and microstructure. Results also displayed that even at low Na/Si ratio geopolymeric coating performs high adhesion with iron with no considerable change in corrosion resistant properties. The maximum adhesion of developed material with mild steel was 14.68 M.Pa. after 28 day ambient curing which presented its functional suitability. Coating sustained point load upto 5 kgs and showed adequate water and salt resistance upto 3 months. In accelerated corrosion environment, optimized geopolymer coating displayed adequate corrosion resistance and displayed rust rating 9. Overall we obtained an optimized material which is well suited for coating of buried mild steel pipes to replace contemporary cement mortar coating in terms of properties, durability, cost effectiveness and environmental sustainability. |
abstractGer |
Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop green and sustainable geopolymer coating material for advanced application, we studied geopolymeric coating of varying Na/Si ratio and alkaline molarities and their long term corrosion resistant properties on mild steel to protect it from surface corrosion. Chemical characterization was performed using combination of powerful characterization tools, more specifically mineralogical assessment by X-ray diffractometer, bonding arrangements by Fourier transform infrared spectroscopy and microstructural details by Field emission scanning electron microscopy techniques. Time of flight secondary ion mass spectroscopy was also used as novel characterization approach to envision the coating-substrate interface and for elemental mapping at the interface which delivered useful information about occurrence of strong covalent bonds between Si–O–Fe in the form of Fe2OSi+ mass fragment with m/z ratio 156. The material was further investigated in terms of adhesion strength and water/salt resistant, following accelerated salt fog test by ASTM codes. Geopolymer with varying Na/Si ratio and alkaline molarity exhibited change in XRD amorphicity and microstructure. Results also displayed that even at low Na/Si ratio geopolymeric coating performs high adhesion with iron with no considerable change in corrosion resistant properties. The maximum adhesion of developed material with mild steel was 14.68 M.Pa. after 28 day ambient curing which presented its functional suitability. Coating sustained point load upto 5 kgs and showed adequate water and salt resistance upto 3 months. In accelerated corrosion environment, optimized geopolymer coating displayed adequate corrosion resistance and displayed rust rating 9. Overall we obtained an optimized material which is well suited for coating of buried mild steel pipes to replace contemporary cement mortar coating in terms of properties, durability, cost effectiveness and environmental sustainability. |
abstract_unstemmed |
Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop green and sustainable geopolymer coating material for advanced application, we studied geopolymeric coating of varying Na/Si ratio and alkaline molarities and their long term corrosion resistant properties on mild steel to protect it from surface corrosion. Chemical characterization was performed using combination of powerful characterization tools, more specifically mineralogical assessment by X-ray diffractometer, bonding arrangements by Fourier transform infrared spectroscopy and microstructural details by Field emission scanning electron microscopy techniques. Time of flight secondary ion mass spectroscopy was also used as novel characterization approach to envision the coating-substrate interface and for elemental mapping at the interface which delivered useful information about occurrence of strong covalent bonds between Si–O–Fe in the form of Fe2OSi+ mass fragment with m/z ratio 156. The material was further investigated in terms of adhesion strength and water/salt resistant, following accelerated salt fog test by ASTM codes. Geopolymer with varying Na/Si ratio and alkaline molarity exhibited change in XRD amorphicity and microstructure. Results also displayed that even at low Na/Si ratio geopolymeric coating performs high adhesion with iron with no considerable change in corrosion resistant properties. The maximum adhesion of developed material with mild steel was 14.68 M.Pa. after 28 day ambient curing which presented its functional suitability. Coating sustained point load upto 5 kgs and showed adequate water and salt resistance upto 3 months. In accelerated corrosion environment, optimized geopolymer coating displayed adequate corrosion resistance and displayed rust rating 9. Overall we obtained an optimized material which is well suited for coating of buried mild steel pipes to replace contemporary cement mortar coating in terms of properties, durability, cost effectiveness and environmental sustainability. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties |
remote_bool |
true |
author2 |
Tomar, Akshay Singh Mishra, Deepti Sanghi, Sunil Kumar |
author2Str |
Tomar, Akshay Singh Mishra, Deepti Sanghi, Sunil Kumar |
ppnlink |
318368277 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.micromeso.2021.110995 |
up_date |
2024-07-06T19:00:02.657Z |
_version_ |
1803857326410563584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005740398</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124911.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.micromeso.2021.110995</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005740398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1387-1811(21)00121-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gupta, Rainy</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9767-0064</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Geopolymers are traditionally used as construction and building material to partially replace Portland cement consumption. The versatile properties of geopolymer present it for use as a multifunctional material and geopolymer cementitious coating is an emerging part of it. In attempts to develop green and sustainable geopolymer coating material for advanced application, we studied geopolymeric coating of varying Na/Si ratio and alkaline molarities and their long term corrosion resistant properties on mild steel to protect it from surface corrosion. Chemical characterization was performed using combination of powerful characterization tools, more specifically mineralogical assessment by X-ray diffractometer, bonding arrangements by Fourier transform infrared spectroscopy and microstructural details by Field emission scanning electron microscopy techniques. Time of flight secondary ion mass spectroscopy was also used as novel characterization approach to envision the coating-substrate interface and for elemental mapping at the interface which delivered useful information about occurrence of strong covalent bonds between Si–O–Fe in the form of Fe2OSi+ mass fragment with m/z ratio 156. The material was further investigated in terms of adhesion strength and water/salt resistant, following accelerated salt fog test by ASTM codes. Geopolymer with varying Na/Si ratio and alkaline molarity exhibited change in XRD amorphicity and microstructure. Results also displayed that even at low Na/Si ratio geopolymeric coating performs high adhesion with iron with no considerable change in corrosion resistant properties. The maximum adhesion of developed material with mild steel was 14.68 M.Pa. after 28 day ambient curing which presented its functional suitability. Coating sustained point load upto 5 kgs and showed adequate water and salt resistance upto 3 months. In accelerated corrosion environment, optimized geopolymer coating displayed adequate corrosion resistance and displayed rust rating 9. Overall we obtained an optimized material which is well suited for coating of buried mild steel pipes to replace contemporary cement mortar coating in terms of properties, durability, cost effectiveness and environmental sustainability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fly ash</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geopolymer cement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adhesion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron substrate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomar, Akshay Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mishra, Deepti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanghi, Sunil Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microporous and mesoporous materials</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1998</subfield><subfield code="g">317</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)318368277</subfield><subfield code="w">(DE-600)2012505-7</subfield><subfield code="w">(DE-576)09529998X</subfield><subfield code="x">1387-1811</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.30</subfield><subfield code="j">Mineralogie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.68</subfield><subfield code="j">Organische Verbindungen: Sonstiges</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">317</subfield></datafield></record></collection>
|
score |
7.4014435 |