Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition
Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these c...
Ausführliche Beschreibung
Autor*in: |
Matsubara, Hitoshi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering geology - Amsterdam [u.a.] : Elsevier Science, 1965, 284 |
---|---|
Übergeordnetes Werk: |
volume:284 |
DOI / URN: |
10.1016/j.enggeo.2021.106044 |
---|
Katalog-ID: |
ELV005771323 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005771323 | ||
003 | DE-627 | ||
005 | 20230524150132.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.enggeo.2021.106044 |2 doi | |
035 | |a (DE-627)ELV005771323 | ||
035 | |a (ELSEVIER)S0013-7952(21)00055-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a 56.20 |2 bkl | ||
100 | 1 | |a Matsubara, Hitoshi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these can require maintenance and even restoration as their effects are not permanent, requiring the development of novel ground-restoration techniques with self-organising restoration functions and environmentally-friendly properties. For example, bio-mediated calcium carbonates may be useful as a bio-protection material for weathered rocks. In this study, the author used field observations and laboratory experiments to assess a weathered limestone outcrop near the Giza cliff in Okinawa, Japan, found to be widely covered by such material, and examined the feasibility of bio-protection technology based on photoautotrophic microorganisms. In the presence of water, calcium carbonate grew around biofilms and other fibrous materials and on limestone particles; the relevant microorganisms were more active in terms of their growth in water with ~100 ppm of calcium ion concentration than at higher concentrations. The Giza site had naturally optimal environmental conditions for these processes, suggesting that bio-protection techniques based on photoautotrophic microorganisms would be useful for protecting weathering limestone surfaces where surface and/or spring water is present. | ||
650 | 4 | |a MICP | |
650 | 4 | |a Photoautotrophic microorganisms | |
650 | 4 | |a Slope bio-protection | |
650 | 4 | |a Limestone | |
650 | 4 | |a Weathered rock | |
773 | 0 | 8 | |i Enthalten in |t Engineering geology |d Amsterdam [u.a.] : Elsevier Science, 1965 |g 284 |h Online-Ressource |w (DE-627)306658267 |w (DE-600)1500329-2 |w (DE-576)259270962 |x 0013-7952 |7 nnns |
773 | 1 | 8 | |g volume:284 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 56.20 |j Ingenieurgeologie |j Bodenmechanik |
951 | |a AR | ||
952 | |d 284 |
author_variant |
h m hm |
---|---|
matchkey_str |
article:00137952:2021----::tblstoowahrdietnsraeuigirbalehnec |
hierarchy_sort_str |
2021 |
bklnumber |
56.20 |
publishDate |
2021 |
allfields |
10.1016/j.enggeo.2021.106044 doi (DE-627)ELV005771323 (ELSEVIER)S0013-7952(21)00055-7 DE-627 ger DE-627 rda eng 550 DE-600 56.20 bkl Matsubara, Hitoshi verfasserin aut Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these can require maintenance and even restoration as their effects are not permanent, requiring the development of novel ground-restoration techniques with self-organising restoration functions and environmentally-friendly properties. For example, bio-mediated calcium carbonates may be useful as a bio-protection material for weathered rocks. In this study, the author used field observations and laboratory experiments to assess a weathered limestone outcrop near the Giza cliff in Okinawa, Japan, found to be widely covered by such material, and examined the feasibility of bio-protection technology based on photoautotrophic microorganisms. In the presence of water, calcium carbonate grew around biofilms and other fibrous materials and on limestone particles; the relevant microorganisms were more active in terms of their growth in water with ~100 ppm of calcium ion concentration than at higher concentrations. The Giza site had naturally optimal environmental conditions for these processes, suggesting that bio-protection techniques based on photoautotrophic microorganisms would be useful for protecting weathering limestone surfaces where surface and/or spring water is present. MICP Photoautotrophic microorganisms Slope bio-protection Limestone Weathered rock Enthalten in Engineering geology Amsterdam [u.a.] : Elsevier Science, 1965 284 Online-Ressource (DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 0013-7952 nnns volume:284 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.20 Ingenieurgeologie Bodenmechanik AR 284 |
spelling |
10.1016/j.enggeo.2021.106044 doi (DE-627)ELV005771323 (ELSEVIER)S0013-7952(21)00055-7 DE-627 ger DE-627 rda eng 550 DE-600 56.20 bkl Matsubara, Hitoshi verfasserin aut Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these can require maintenance and even restoration as their effects are not permanent, requiring the development of novel ground-restoration techniques with self-organising restoration functions and environmentally-friendly properties. For example, bio-mediated calcium carbonates may be useful as a bio-protection material for weathered rocks. In this study, the author used field observations and laboratory experiments to assess a weathered limestone outcrop near the Giza cliff in Okinawa, Japan, found to be widely covered by such material, and examined the feasibility of bio-protection technology based on photoautotrophic microorganisms. In the presence of water, calcium carbonate grew around biofilms and other fibrous materials and on limestone particles; the relevant microorganisms were more active in terms of their growth in water with ~100 ppm of calcium ion concentration than at higher concentrations. The Giza site had naturally optimal environmental conditions for these processes, suggesting that bio-protection techniques based on photoautotrophic microorganisms would be useful for protecting weathering limestone surfaces where surface and/or spring water is present. MICP Photoautotrophic microorganisms Slope bio-protection Limestone Weathered rock Enthalten in Engineering geology Amsterdam [u.a.] : Elsevier Science, 1965 284 Online-Ressource (DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 0013-7952 nnns volume:284 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.20 Ingenieurgeologie Bodenmechanik AR 284 |
allfields_unstemmed |
10.1016/j.enggeo.2021.106044 doi (DE-627)ELV005771323 (ELSEVIER)S0013-7952(21)00055-7 DE-627 ger DE-627 rda eng 550 DE-600 56.20 bkl Matsubara, Hitoshi verfasserin aut Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these can require maintenance and even restoration as their effects are not permanent, requiring the development of novel ground-restoration techniques with self-organising restoration functions and environmentally-friendly properties. For example, bio-mediated calcium carbonates may be useful as a bio-protection material for weathered rocks. In this study, the author used field observations and laboratory experiments to assess a weathered limestone outcrop near the Giza cliff in Okinawa, Japan, found to be widely covered by such material, and examined the feasibility of bio-protection technology based on photoautotrophic microorganisms. In the presence of water, calcium carbonate grew around biofilms and other fibrous materials and on limestone particles; the relevant microorganisms were more active in terms of their growth in water with ~100 ppm of calcium ion concentration than at higher concentrations. The Giza site had naturally optimal environmental conditions for these processes, suggesting that bio-protection techniques based on photoautotrophic microorganisms would be useful for protecting weathering limestone surfaces where surface and/or spring water is present. MICP Photoautotrophic microorganisms Slope bio-protection Limestone Weathered rock Enthalten in Engineering geology Amsterdam [u.a.] : Elsevier Science, 1965 284 Online-Ressource (DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 0013-7952 nnns volume:284 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.20 Ingenieurgeologie Bodenmechanik AR 284 |
allfieldsGer |
10.1016/j.enggeo.2021.106044 doi (DE-627)ELV005771323 (ELSEVIER)S0013-7952(21)00055-7 DE-627 ger DE-627 rda eng 550 DE-600 56.20 bkl Matsubara, Hitoshi verfasserin aut Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these can require maintenance and even restoration as their effects are not permanent, requiring the development of novel ground-restoration techniques with self-organising restoration functions and environmentally-friendly properties. For example, bio-mediated calcium carbonates may be useful as a bio-protection material for weathered rocks. In this study, the author used field observations and laboratory experiments to assess a weathered limestone outcrop near the Giza cliff in Okinawa, Japan, found to be widely covered by such material, and examined the feasibility of bio-protection technology based on photoautotrophic microorganisms. In the presence of water, calcium carbonate grew around biofilms and other fibrous materials and on limestone particles; the relevant microorganisms were more active in terms of their growth in water with ~100 ppm of calcium ion concentration than at higher concentrations. The Giza site had naturally optimal environmental conditions for these processes, suggesting that bio-protection techniques based on photoautotrophic microorganisms would be useful for protecting weathering limestone surfaces where surface and/or spring water is present. MICP Photoautotrophic microorganisms Slope bio-protection Limestone Weathered rock Enthalten in Engineering geology Amsterdam [u.a.] : Elsevier Science, 1965 284 Online-Ressource (DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 0013-7952 nnns volume:284 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.20 Ingenieurgeologie Bodenmechanik AR 284 |
allfieldsSound |
10.1016/j.enggeo.2021.106044 doi (DE-627)ELV005771323 (ELSEVIER)S0013-7952(21)00055-7 DE-627 ger DE-627 rda eng 550 DE-600 56.20 bkl Matsubara, Hitoshi verfasserin aut Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these can require maintenance and even restoration as their effects are not permanent, requiring the development of novel ground-restoration techniques with self-organising restoration functions and environmentally-friendly properties. For example, bio-mediated calcium carbonates may be useful as a bio-protection material for weathered rocks. In this study, the author used field observations and laboratory experiments to assess a weathered limestone outcrop near the Giza cliff in Okinawa, Japan, found to be widely covered by such material, and examined the feasibility of bio-protection technology based on photoautotrophic microorganisms. In the presence of water, calcium carbonate grew around biofilms and other fibrous materials and on limestone particles; the relevant microorganisms were more active in terms of their growth in water with ~100 ppm of calcium ion concentration than at higher concentrations. The Giza site had naturally optimal environmental conditions for these processes, suggesting that bio-protection techniques based on photoautotrophic microorganisms would be useful for protecting weathering limestone surfaces where surface and/or spring water is present. MICP Photoautotrophic microorganisms Slope bio-protection Limestone Weathered rock Enthalten in Engineering geology Amsterdam [u.a.] : Elsevier Science, 1965 284 Online-Ressource (DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 0013-7952 nnns volume:284 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.20 Ingenieurgeologie Bodenmechanik AR 284 |
language |
English |
source |
Enthalten in Engineering geology 284 volume:284 |
sourceStr |
Enthalten in Engineering geology 284 volume:284 |
format_phy_str_mv |
Article |
bklname |
Ingenieurgeologie Bodenmechanik |
institution |
findex.gbv.de |
topic_facet |
MICP Photoautotrophic microorganisms Slope bio-protection Limestone Weathered rock |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Engineering geology |
authorswithroles_txt_mv |
Matsubara, Hitoshi @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
306658267 |
dewey-sort |
3550 |
id |
ELV005771323 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005771323</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enggeo.2021.106044</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005771323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-7952(21)00055-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Matsubara, Hitoshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these can require maintenance and even restoration as their effects are not permanent, requiring the development of novel ground-restoration techniques with self-organising restoration functions and environmentally-friendly properties. For example, bio-mediated calcium carbonates may be useful as a bio-protection material for weathered rocks. In this study, the author used field observations and laboratory experiments to assess a weathered limestone outcrop near the Giza cliff in Okinawa, Japan, found to be widely covered by such material, and examined the feasibility of bio-protection technology based on photoautotrophic microorganisms. In the presence of water, calcium carbonate grew around biofilms and other fibrous materials and on limestone particles; the relevant microorganisms were more active in terms of their growth in water with ~100 ppm of calcium ion concentration than at higher concentrations. The Giza site had naturally optimal environmental conditions for these processes, suggesting that bio-protection techniques based on photoautotrophic microorganisms would be useful for protecting weathering limestone surfaces where surface and/or spring water is present.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MICP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoautotrophic microorganisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slope bio-protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limestone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weathered rock</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering geology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1965</subfield><subfield code="g">284</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306658267</subfield><subfield code="w">(DE-600)1500329-2</subfield><subfield code="w">(DE-576)259270962</subfield><subfield code="x">0013-7952</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:284</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">284</subfield></datafield></record></collection>
|
author |
Matsubara, Hitoshi |
spellingShingle |
Matsubara, Hitoshi ddc 550 bkl 56.20 misc MICP misc Photoautotrophic microorganisms misc Slope bio-protection misc Limestone misc Weathered rock Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition |
authorStr |
Matsubara, Hitoshi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306658267 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0013-7952 |
topic_title |
550 DE-600 56.20 bkl Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition MICP Photoautotrophic microorganisms Slope bio-protection Limestone Weathered rock |
topic |
ddc 550 bkl 56.20 misc MICP misc Photoautotrophic microorganisms misc Slope bio-protection misc Limestone misc Weathered rock |
topic_unstemmed |
ddc 550 bkl 56.20 misc MICP misc Photoautotrophic microorganisms misc Slope bio-protection misc Limestone misc Weathered rock |
topic_browse |
ddc 550 bkl 56.20 misc MICP misc Photoautotrophic microorganisms misc Slope bio-protection misc Limestone misc Weathered rock |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering geology |
hierarchy_parent_id |
306658267 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Engineering geology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 |
title |
Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition |
ctrlnum |
(DE-627)ELV005771323 (ELSEVIER)S0013-7952(21)00055-7 |
title_full |
Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition |
author_sort |
Matsubara, Hitoshi |
journal |
Engineering geology |
journalStr |
Engineering geology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Matsubara, Hitoshi |
container_volume |
284 |
class |
550 DE-600 56.20 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Matsubara, Hitoshi |
doi_str_mv |
10.1016/j.enggeo.2021.106044 |
dewey-full |
550 |
title_sort |
stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition |
title_auth |
Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition |
abstract |
Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these can require maintenance and even restoration as their effects are not permanent, requiring the development of novel ground-restoration techniques with self-organising restoration functions and environmentally-friendly properties. For example, bio-mediated calcium carbonates may be useful as a bio-protection material for weathered rocks. In this study, the author used field observations and laboratory experiments to assess a weathered limestone outcrop near the Giza cliff in Okinawa, Japan, found to be widely covered by such material, and examined the feasibility of bio-protection technology based on photoautotrophic microorganisms. In the presence of water, calcium carbonate grew around biofilms and other fibrous materials and on limestone particles; the relevant microorganisms were more active in terms of their growth in water with ~100 ppm of calcium ion concentration than at higher concentrations. The Giza site had naturally optimal environmental conditions for these processes, suggesting that bio-protection techniques based on photoautotrophic microorganisms would be useful for protecting weathering limestone surfaces where surface and/or spring water is present. |
abstractGer |
Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these can require maintenance and even restoration as their effects are not permanent, requiring the development of novel ground-restoration techniques with self-organising restoration functions and environmentally-friendly properties. For example, bio-mediated calcium carbonates may be useful as a bio-protection material for weathered rocks. In this study, the author used field observations and laboratory experiments to assess a weathered limestone outcrop near the Giza cliff in Okinawa, Japan, found to be widely covered by such material, and examined the feasibility of bio-protection technology based on photoautotrophic microorganisms. In the presence of water, calcium carbonate grew around biofilms and other fibrous materials and on limestone particles; the relevant microorganisms were more active in terms of their growth in water with ~100 ppm of calcium ion concentration than at higher concentrations. The Giza site had naturally optimal environmental conditions for these processes, suggesting that bio-protection techniques based on photoautotrophic microorganisms would be useful for protecting weathering limestone surfaces where surface and/or spring water is present. |
abstract_unstemmed |
Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these can require maintenance and even restoration as their effects are not permanent, requiring the development of novel ground-restoration techniques with self-organising restoration functions and environmentally-friendly properties. For example, bio-mediated calcium carbonates may be useful as a bio-protection material for weathered rocks. In this study, the author used field observations and laboratory experiments to assess a weathered limestone outcrop near the Giza cliff in Okinawa, Japan, found to be widely covered by such material, and examined the feasibility of bio-protection technology based on photoautotrophic microorganisms. In the presence of water, calcium carbonate grew around biofilms and other fibrous materials and on limestone particles; the relevant microorganisms were more active in terms of their growth in water with ~100 ppm of calcium ion concentration than at higher concentrations. The Giza site had naturally optimal environmental conditions for these processes, suggesting that bio-protection techniques based on photoautotrophic microorganisms would be useful for protecting weathering limestone surfaces where surface and/or spring water is present. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition |
remote_bool |
true |
ppnlink |
306658267 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.enggeo.2021.106044 |
up_date |
2024-07-06T19:06:25.640Z |
_version_ |
1803857727995248640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005771323</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enggeo.2021.106044</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005771323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-7952(21)00055-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Matsubara, Hitoshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stabilisation of weathered limestone surfaces using microbially enhanced calcium carbonate deposition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Surface weathering of limestone may result in rock embrittlement via internal or surficial mineral alterations, potentially triggering serious rock falls, slope failure, etc. Traditional stabilisation techniques have relied on physical approaches such as anchoring and retaining walls, though these can require maintenance and even restoration as their effects are not permanent, requiring the development of novel ground-restoration techniques with self-organising restoration functions and environmentally-friendly properties. For example, bio-mediated calcium carbonates may be useful as a bio-protection material for weathered rocks. In this study, the author used field observations and laboratory experiments to assess a weathered limestone outcrop near the Giza cliff in Okinawa, Japan, found to be widely covered by such material, and examined the feasibility of bio-protection technology based on photoautotrophic microorganisms. In the presence of water, calcium carbonate grew around biofilms and other fibrous materials and on limestone particles; the relevant microorganisms were more active in terms of their growth in water with ~100 ppm of calcium ion concentration than at higher concentrations. The Giza site had naturally optimal environmental conditions for these processes, suggesting that bio-protection techniques based on photoautotrophic microorganisms would be useful for protecting weathering limestone surfaces where surface and/or spring water is present.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MICP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoautotrophic microorganisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slope bio-protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limestone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weathered rock</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering geology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1965</subfield><subfield code="g">284</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306658267</subfield><subfield code="w">(DE-600)1500329-2</subfield><subfield code="w">(DE-576)259270962</subfield><subfield code="x">0013-7952</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:284</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">284</subfield></datafield></record></collection>
|
score |
7.3990545 |