A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation
The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited...
Ausführliche Beschreibung
Autor*in: |
Liu, Tianming [verfasserIn] Yan, Huizhen [verfasserIn] Banerjee, Santo [verfasserIn] Mou, Jun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chaos, solitons & fractals - Amsterdam [u.a.] : Elsevier Science, 1991, 145 |
---|---|
Übergeordnetes Werk: |
volume:145 |
DOI / URN: |
10.1016/j.chaos.2021.110791 |
---|
Katalog-ID: |
ELV005785200 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005785200 | ||
003 | DE-627 | ||
005 | 20230524162934.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chaos.2021.110791 |2 doi | |
035 | |a (DE-627)ELV005785200 | ||
035 | |a (ELSEVIER)S0960-0779(21)00143-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 30.20 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Liu, Tianming |e verfasserin |4 aut | |
245 | 1 | 0 | |a A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited and hidden attractors in FMACS are compared and analyzed through the Lyapunov spectrum, bifurcation model, and complexity. It is worth noting that some hidden coexistence attractors with different shapes are affected by the order. Besides, a novel chaotic system without equilibrium points is constructed, in which the nonlinear function term in FMACS is replaced with a rare nonlinear function e x . Meanwhile, its degradation phenomenon and state transition phenomenon are analyzed in detail. Finally, the digital circuit of the system is realized on the DSP board. The research result shows that FMACS has richer dynamical behaviors and higher complexity. This research provides a theoretical basis and guidance for the application of fractional chaotic systems. | ||
650 | 4 | |a Fractional-order chaotic system | |
650 | 4 | |a ADM | |
650 | 4 | |a Hidden attractor | |
650 | 4 | |a State transition | |
700 | 1 | |a Yan, Huizhen |e verfasserin |4 aut | |
700 | 1 | |a Banerjee, Santo |e verfasserin |4 aut | |
700 | 1 | |a Mou, Jun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chaos, solitons & fractals |d Amsterdam [u.a.] : Elsevier Science, 1991 |g 145 |h Online-Ressource |w (DE-627)314118497 |w (DE-600)2003919-0 |w (DE-576)094504040 |x 1873-2887 |7 nnns |
773 | 1 | 8 | |g volume:145 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 30.20 |j Nichtlineare Dynamik |
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |
951 | |a AR | ||
952 | |d 145 |
author_variant |
t l tl h y hy s b sb j m jm |
---|---|
matchkey_str |
article:18732887:2021----::fatoaodrhoissewthdeatatrnslectdtrc |
hierarchy_sort_str |
2021 |
bklnumber |
30.20 31.00 |
publishDate |
2021 |
allfields |
10.1016/j.chaos.2021.110791 doi (DE-627)ELV005785200 (ELSEVIER)S0960-0779(21)00143-0 DE-627 ger DE-627 rda eng 510 DE-600 30.20 bkl 31.00 bkl Liu, Tianming verfasserin aut A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited and hidden attractors in FMACS are compared and analyzed through the Lyapunov spectrum, bifurcation model, and complexity. It is worth noting that some hidden coexistence attractors with different shapes are affected by the order. Besides, a novel chaotic system without equilibrium points is constructed, in which the nonlinear function term in FMACS is replaced with a rare nonlinear function e x . Meanwhile, its degradation phenomenon and state transition phenomenon are analyzed in detail. Finally, the digital circuit of the system is realized on the DSP board. The research result shows that FMACS has richer dynamical behaviors and higher complexity. This research provides a theoretical basis and guidance for the application of fractional chaotic systems. Fractional-order chaotic system ADM Hidden attractor State transition Yan, Huizhen verfasserin aut Banerjee, Santo verfasserin aut Mou, Jun verfasserin aut Enthalten in Chaos, solitons & fractals Amsterdam [u.a.] : Elsevier Science, 1991 145 Online-Ressource (DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 1873-2887 nnns volume:145 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 30.20 Nichtlineare Dynamik 31.00 Mathematik: Allgemeines AR 145 |
spelling |
10.1016/j.chaos.2021.110791 doi (DE-627)ELV005785200 (ELSEVIER)S0960-0779(21)00143-0 DE-627 ger DE-627 rda eng 510 DE-600 30.20 bkl 31.00 bkl Liu, Tianming verfasserin aut A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited and hidden attractors in FMACS are compared and analyzed through the Lyapunov spectrum, bifurcation model, and complexity. It is worth noting that some hidden coexistence attractors with different shapes are affected by the order. Besides, a novel chaotic system without equilibrium points is constructed, in which the nonlinear function term in FMACS is replaced with a rare nonlinear function e x . Meanwhile, its degradation phenomenon and state transition phenomenon are analyzed in detail. Finally, the digital circuit of the system is realized on the DSP board. The research result shows that FMACS has richer dynamical behaviors and higher complexity. This research provides a theoretical basis and guidance for the application of fractional chaotic systems. Fractional-order chaotic system ADM Hidden attractor State transition Yan, Huizhen verfasserin aut Banerjee, Santo verfasserin aut Mou, Jun verfasserin aut Enthalten in Chaos, solitons & fractals Amsterdam [u.a.] : Elsevier Science, 1991 145 Online-Ressource (DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 1873-2887 nnns volume:145 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 30.20 Nichtlineare Dynamik 31.00 Mathematik: Allgemeines AR 145 |
allfields_unstemmed |
10.1016/j.chaos.2021.110791 doi (DE-627)ELV005785200 (ELSEVIER)S0960-0779(21)00143-0 DE-627 ger DE-627 rda eng 510 DE-600 30.20 bkl 31.00 bkl Liu, Tianming verfasserin aut A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited and hidden attractors in FMACS are compared and analyzed through the Lyapunov spectrum, bifurcation model, and complexity. It is worth noting that some hidden coexistence attractors with different shapes are affected by the order. Besides, a novel chaotic system without equilibrium points is constructed, in which the nonlinear function term in FMACS is replaced with a rare nonlinear function e x . Meanwhile, its degradation phenomenon and state transition phenomenon are analyzed in detail. Finally, the digital circuit of the system is realized on the DSP board. The research result shows that FMACS has richer dynamical behaviors and higher complexity. This research provides a theoretical basis and guidance for the application of fractional chaotic systems. Fractional-order chaotic system ADM Hidden attractor State transition Yan, Huizhen verfasserin aut Banerjee, Santo verfasserin aut Mou, Jun verfasserin aut Enthalten in Chaos, solitons & fractals Amsterdam [u.a.] : Elsevier Science, 1991 145 Online-Ressource (DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 1873-2887 nnns volume:145 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 30.20 Nichtlineare Dynamik 31.00 Mathematik: Allgemeines AR 145 |
allfieldsGer |
10.1016/j.chaos.2021.110791 doi (DE-627)ELV005785200 (ELSEVIER)S0960-0779(21)00143-0 DE-627 ger DE-627 rda eng 510 DE-600 30.20 bkl 31.00 bkl Liu, Tianming verfasserin aut A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited and hidden attractors in FMACS are compared and analyzed through the Lyapunov spectrum, bifurcation model, and complexity. It is worth noting that some hidden coexistence attractors with different shapes are affected by the order. Besides, a novel chaotic system without equilibrium points is constructed, in which the nonlinear function term in FMACS is replaced with a rare nonlinear function e x . Meanwhile, its degradation phenomenon and state transition phenomenon are analyzed in detail. Finally, the digital circuit of the system is realized on the DSP board. The research result shows that FMACS has richer dynamical behaviors and higher complexity. This research provides a theoretical basis and guidance for the application of fractional chaotic systems. Fractional-order chaotic system ADM Hidden attractor State transition Yan, Huizhen verfasserin aut Banerjee, Santo verfasserin aut Mou, Jun verfasserin aut Enthalten in Chaos, solitons & fractals Amsterdam [u.a.] : Elsevier Science, 1991 145 Online-Ressource (DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 1873-2887 nnns volume:145 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 30.20 Nichtlineare Dynamik 31.00 Mathematik: Allgemeines AR 145 |
allfieldsSound |
10.1016/j.chaos.2021.110791 doi (DE-627)ELV005785200 (ELSEVIER)S0960-0779(21)00143-0 DE-627 ger DE-627 rda eng 510 DE-600 30.20 bkl 31.00 bkl Liu, Tianming verfasserin aut A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited and hidden attractors in FMACS are compared and analyzed through the Lyapunov spectrum, bifurcation model, and complexity. It is worth noting that some hidden coexistence attractors with different shapes are affected by the order. Besides, a novel chaotic system without equilibrium points is constructed, in which the nonlinear function term in FMACS is replaced with a rare nonlinear function e x . Meanwhile, its degradation phenomenon and state transition phenomenon are analyzed in detail. Finally, the digital circuit of the system is realized on the DSP board. The research result shows that FMACS has richer dynamical behaviors and higher complexity. This research provides a theoretical basis and guidance for the application of fractional chaotic systems. Fractional-order chaotic system ADM Hidden attractor State transition Yan, Huizhen verfasserin aut Banerjee, Santo verfasserin aut Mou, Jun verfasserin aut Enthalten in Chaos, solitons & fractals Amsterdam [u.a.] : Elsevier Science, 1991 145 Online-Ressource (DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 1873-2887 nnns volume:145 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 30.20 Nichtlineare Dynamik 31.00 Mathematik: Allgemeines AR 145 |
language |
English |
source |
Enthalten in Chaos, solitons & fractals 145 volume:145 |
sourceStr |
Enthalten in Chaos, solitons & fractals 145 volume:145 |
format_phy_str_mv |
Article |
bklname |
Nichtlineare Dynamik Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Fractional-order chaotic system ADM Hidden attractor State transition |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Chaos, solitons & fractals |
authorswithroles_txt_mv |
Liu, Tianming @@aut@@ Yan, Huizhen @@aut@@ Banerjee, Santo @@aut@@ Mou, Jun @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
314118497 |
dewey-sort |
3510 |
id |
ELV005785200 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005785200</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162934.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chaos.2021.110791</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005785200</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-0779(21)00143-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Tianming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited and hidden attractors in FMACS are compared and analyzed through the Lyapunov spectrum, bifurcation model, and complexity. It is worth noting that some hidden coexistence attractors with different shapes are affected by the order. Besides, a novel chaotic system without equilibrium points is constructed, in which the nonlinear function term in FMACS is replaced with a rare nonlinear function e x . Meanwhile, its degradation phenomenon and state transition phenomenon are analyzed in detail. Finally, the digital circuit of the system is realized on the DSP board. The research result shows that FMACS has richer dynamical behaviors and higher complexity. This research provides a theoretical basis and guidance for the application of fractional chaotic systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional-order chaotic system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ADM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hidden attractor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">State transition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Huizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Banerjee, Santo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mou, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chaos, solitons & fractals</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">145</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)314118497</subfield><subfield code="w">(DE-600)2003919-0</subfield><subfield code="w">(DE-576)094504040</subfield><subfield code="x">1873-2887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:145</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.20</subfield><subfield code="j">Nichtlineare Dynamik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">145</subfield></datafield></record></collection>
|
author |
Liu, Tianming |
spellingShingle |
Liu, Tianming ddc 510 bkl 30.20 bkl 31.00 misc Fractional-order chaotic system misc ADM misc Hidden attractor misc State transition A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation |
authorStr |
Liu, Tianming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)314118497 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2887 |
topic_title |
510 DE-600 30.20 bkl 31.00 bkl A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation Fractional-order chaotic system ADM Hidden attractor State transition |
topic |
ddc 510 bkl 30.20 bkl 31.00 misc Fractional-order chaotic system misc ADM misc Hidden attractor misc State transition |
topic_unstemmed |
ddc 510 bkl 30.20 bkl 31.00 misc Fractional-order chaotic system misc ADM misc Hidden attractor misc State transition |
topic_browse |
ddc 510 bkl 30.20 bkl 31.00 misc Fractional-order chaotic system misc ADM misc Hidden attractor misc State transition |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chaos, solitons & fractals |
hierarchy_parent_id |
314118497 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Chaos, solitons & fractals |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 |
title |
A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation |
ctrlnum |
(DE-627)ELV005785200 (ELSEVIER)S0960-0779(21)00143-0 |
title_full |
A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation |
author_sort |
Liu, Tianming |
journal |
Chaos, solitons & fractals |
journalStr |
Chaos, solitons & fractals |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Tianming Yan, Huizhen Banerjee, Santo Mou, Jun |
container_volume |
145 |
class |
510 DE-600 30.20 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Tianming |
doi_str_mv |
10.1016/j.chaos.2021.110791 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
a fractional-order chaotic system with hidden attractor and self-excited attractor and its dsp implementation |
title_auth |
A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation |
abstract |
The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited and hidden attractors in FMACS are compared and analyzed through the Lyapunov spectrum, bifurcation model, and complexity. It is worth noting that some hidden coexistence attractors with different shapes are affected by the order. Besides, a novel chaotic system without equilibrium points is constructed, in which the nonlinear function term in FMACS is replaced with a rare nonlinear function e x . Meanwhile, its degradation phenomenon and state transition phenomenon are analyzed in detail. Finally, the digital circuit of the system is realized on the DSP board. The research result shows that FMACS has richer dynamical behaviors and higher complexity. This research provides a theoretical basis and guidance for the application of fractional chaotic systems. |
abstractGer |
The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited and hidden attractors in FMACS are compared and analyzed through the Lyapunov spectrum, bifurcation model, and complexity. It is worth noting that some hidden coexistence attractors with different shapes are affected by the order. Besides, a novel chaotic system without equilibrium points is constructed, in which the nonlinear function term in FMACS is replaced with a rare nonlinear function e x . Meanwhile, its degradation phenomenon and state transition phenomenon are analyzed in detail. Finally, the digital circuit of the system is realized on the DSP board. The research result shows that FMACS has richer dynamical behaviors and higher complexity. This research provides a theoretical basis and guidance for the application of fractional chaotic systems. |
abstract_unstemmed |
The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited and hidden attractors in FMACS are compared and analyzed through the Lyapunov spectrum, bifurcation model, and complexity. It is worth noting that some hidden coexistence attractors with different shapes are affected by the order. Besides, a novel chaotic system without equilibrium points is constructed, in which the nonlinear function term in FMACS is replaced with a rare nonlinear function e x . Meanwhile, its degradation phenomenon and state transition phenomenon are analyzed in detail. Finally, the digital circuit of the system is realized on the DSP board. The research result shows that FMACS has richer dynamical behaviors and higher complexity. This research provides a theoretical basis and guidance for the application of fractional chaotic systems. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation |
remote_bool |
true |
author2 |
Yan, Huizhen Banerjee, Santo Mou, Jun |
author2Str |
Yan, Huizhen Banerjee, Santo Mou, Jun |
ppnlink |
314118497 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.chaos.2021.110791 |
up_date |
2024-07-06T19:09:19.876Z |
_version_ |
1803857910697033728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005785200</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162934.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chaos.2021.110791</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005785200</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-0779(21)00143-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Tianming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The definition of fractional calculus is introduced into a 3D multi-attribute chaotic system in this paper. The fractional multi-attribute chaotic system (FMACS) numerical solution is obtained based on the Adomian decomposition method (ADM). The balance points and dynamical behaviors of self-excited and hidden attractors in FMACS are compared and analyzed through the Lyapunov spectrum, bifurcation model, and complexity. It is worth noting that some hidden coexistence attractors with different shapes are affected by the order. Besides, a novel chaotic system without equilibrium points is constructed, in which the nonlinear function term in FMACS is replaced with a rare nonlinear function e x . Meanwhile, its degradation phenomenon and state transition phenomenon are analyzed in detail. Finally, the digital circuit of the system is realized on the DSP board. The research result shows that FMACS has richer dynamical behaviors and higher complexity. This research provides a theoretical basis and guidance for the application of fractional chaotic systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional-order chaotic system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ADM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hidden attractor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">State transition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Huizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Banerjee, Santo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mou, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chaos, solitons & fractals</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">145</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)314118497</subfield><subfield code="w">(DE-600)2003919-0</subfield><subfield code="w">(DE-576)094504040</subfield><subfield code="x">1873-2887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:145</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.20</subfield><subfield code="j">Nichtlineare Dynamik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">145</subfield></datafield></record></collection>
|
score |
7.400304 |