A novel method for automatic identification of rock fracture signals in microseismic monitoring
Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to ident...
Ausführliche Beschreibung
Autor*in: |
Jiang, Ruochen [verfasserIn] Dai, Feng [verfasserIn] Liu, Yi [verfasserIn] Li, Ang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Measurement - Amsterdam [u.a.] : Elsevier Science, 1983, 175 |
---|---|
Übergeordnetes Werk: |
volume:175 |
DOI / URN: |
10.1016/j.measurement.2021.109129 |
---|
Katalog-ID: |
ELV005793203 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005793203 | ||
003 | DE-627 | ||
005 | 20230524153419.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.measurement.2021.109129 |2 doi | |
035 | |a (DE-627)ELV005793203 | ||
035 | |a (ELSEVIER)S0263-2241(21)00157-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 50.21 |2 bkl | ||
100 | 1 | |a Jiang, Ruochen |e verfasserin |4 aut | |
245 | 1 | 0 | |a A novel method for automatic identification of rock fracture signals in microseismic monitoring |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to identify MS signals with high efficiency and accuracy. However, the identification work is inevitably disturbed by vibration signals from the blasting activities involved in rock/mining engineering. Currently, the classification work of MS and blasting signals is mainly carried out by the on-site operators based on their own experience, which is time-consuming and subjectively sensitive. In this work, a new discriminant method is developed to automatically recognize these signals based on their time-frequency spectrum characteristics to offer more reliable data for MS monitoring analysis. Singular value decomposition is adopted to reduce data volume and obtain unique features. Random Forest (RF) is applied to achieve automatic recognition and get the most important features based on the variation of ‘out-of-bag’ error and Gini Index. These most important features can be used to optimize the RF classifier. The numerical experiments are conducted to verify our new method. The results prove that the method reaches 95.99%±0.1% accuracy in 100 repetitions for events collected from the field, and the optimized RF produces a more accurate result (97%) using fewer characteristics, which is higher than the methods reported in the previous literature. The proposed method diminishes the sensitivity of operators in the classification and promotes the accuracy and efficiency of the identification of MS signals data in the application of MS monitoring technology. Moreover, this strategy also offers a new strategy to process the acquired monitoring signals in other monitoring techniques. | ||
650 | 4 | |a Automatic identification | |
650 | 4 | |a Microseismic monitoring | |
650 | 4 | |a Microseismic signals | |
650 | 4 | |a Blasting signals | |
650 | 4 | |a Underground rock excavation | |
700 | 1 | |a Dai, Feng |e verfasserin |4 aut | |
700 | 1 | |a Liu, Yi |e verfasserin |4 aut | |
700 | 1 | |a Li, Ang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Measurement |d Amsterdam [u.a.] : Elsevier Science, 1983 |g 175 |h Online-Ressource |w (DE-627)320404927 |w (DE-600)2000550-7 |w (DE-576)259484342 |7 nnns |
773 | 1 | 8 | |g volume:175 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.21 |j Messtechnik |
951 | |a AR | ||
952 | |d 175 |
author_variant |
r j rj f d fd y l yl a l al |
---|---|
matchkey_str |
jiangruochendaifengliuyiliang:2021----:nvlehdoatmtcdniiainfokrcueinli |
hierarchy_sort_str |
2021 |
bklnumber |
50.21 |
publishDate |
2021 |
allfields |
10.1016/j.measurement.2021.109129 doi (DE-627)ELV005793203 (ELSEVIER)S0263-2241(21)00157-3 DE-627 ger DE-627 rda eng 660 DE-600 50.21 bkl Jiang, Ruochen verfasserin aut A novel method for automatic identification of rock fracture signals in microseismic monitoring 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to identify MS signals with high efficiency and accuracy. However, the identification work is inevitably disturbed by vibration signals from the blasting activities involved in rock/mining engineering. Currently, the classification work of MS and blasting signals is mainly carried out by the on-site operators based on their own experience, which is time-consuming and subjectively sensitive. In this work, a new discriminant method is developed to automatically recognize these signals based on their time-frequency spectrum characteristics to offer more reliable data for MS monitoring analysis. Singular value decomposition is adopted to reduce data volume and obtain unique features. Random Forest (RF) is applied to achieve automatic recognition and get the most important features based on the variation of ‘out-of-bag’ error and Gini Index. These most important features can be used to optimize the RF classifier. The numerical experiments are conducted to verify our new method. The results prove that the method reaches 95.99%±0.1% accuracy in 100 repetitions for events collected from the field, and the optimized RF produces a more accurate result (97%) using fewer characteristics, which is higher than the methods reported in the previous literature. The proposed method diminishes the sensitivity of operators in the classification and promotes the accuracy and efficiency of the identification of MS signals data in the application of MS monitoring technology. Moreover, this strategy also offers a new strategy to process the acquired monitoring signals in other monitoring techniques. Automatic identification Microseismic monitoring Microseismic signals Blasting signals Underground rock excavation Dai, Feng verfasserin aut Liu, Yi verfasserin aut Li, Ang verfasserin aut Enthalten in Measurement Amsterdam [u.a.] : Elsevier Science, 1983 175 Online-Ressource (DE-627)320404927 (DE-600)2000550-7 (DE-576)259484342 nnns volume:175 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.21 Messtechnik AR 175 |
spelling |
10.1016/j.measurement.2021.109129 doi (DE-627)ELV005793203 (ELSEVIER)S0263-2241(21)00157-3 DE-627 ger DE-627 rda eng 660 DE-600 50.21 bkl Jiang, Ruochen verfasserin aut A novel method for automatic identification of rock fracture signals in microseismic monitoring 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to identify MS signals with high efficiency and accuracy. However, the identification work is inevitably disturbed by vibration signals from the blasting activities involved in rock/mining engineering. Currently, the classification work of MS and blasting signals is mainly carried out by the on-site operators based on their own experience, which is time-consuming and subjectively sensitive. In this work, a new discriminant method is developed to automatically recognize these signals based on their time-frequency spectrum characteristics to offer more reliable data for MS monitoring analysis. Singular value decomposition is adopted to reduce data volume and obtain unique features. Random Forest (RF) is applied to achieve automatic recognition and get the most important features based on the variation of ‘out-of-bag’ error and Gini Index. These most important features can be used to optimize the RF classifier. The numerical experiments are conducted to verify our new method. The results prove that the method reaches 95.99%±0.1% accuracy in 100 repetitions for events collected from the field, and the optimized RF produces a more accurate result (97%) using fewer characteristics, which is higher than the methods reported in the previous literature. The proposed method diminishes the sensitivity of operators in the classification and promotes the accuracy and efficiency of the identification of MS signals data in the application of MS monitoring technology. Moreover, this strategy also offers a new strategy to process the acquired monitoring signals in other monitoring techniques. Automatic identification Microseismic monitoring Microseismic signals Blasting signals Underground rock excavation Dai, Feng verfasserin aut Liu, Yi verfasserin aut Li, Ang verfasserin aut Enthalten in Measurement Amsterdam [u.a.] : Elsevier Science, 1983 175 Online-Ressource (DE-627)320404927 (DE-600)2000550-7 (DE-576)259484342 nnns volume:175 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.21 Messtechnik AR 175 |
allfields_unstemmed |
10.1016/j.measurement.2021.109129 doi (DE-627)ELV005793203 (ELSEVIER)S0263-2241(21)00157-3 DE-627 ger DE-627 rda eng 660 DE-600 50.21 bkl Jiang, Ruochen verfasserin aut A novel method for automatic identification of rock fracture signals in microseismic monitoring 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to identify MS signals with high efficiency and accuracy. However, the identification work is inevitably disturbed by vibration signals from the blasting activities involved in rock/mining engineering. Currently, the classification work of MS and blasting signals is mainly carried out by the on-site operators based on their own experience, which is time-consuming and subjectively sensitive. In this work, a new discriminant method is developed to automatically recognize these signals based on their time-frequency spectrum characteristics to offer more reliable data for MS monitoring analysis. Singular value decomposition is adopted to reduce data volume and obtain unique features. Random Forest (RF) is applied to achieve automatic recognition and get the most important features based on the variation of ‘out-of-bag’ error and Gini Index. These most important features can be used to optimize the RF classifier. The numerical experiments are conducted to verify our new method. The results prove that the method reaches 95.99%±0.1% accuracy in 100 repetitions for events collected from the field, and the optimized RF produces a more accurate result (97%) using fewer characteristics, which is higher than the methods reported in the previous literature. The proposed method diminishes the sensitivity of operators in the classification and promotes the accuracy and efficiency of the identification of MS signals data in the application of MS monitoring technology. Moreover, this strategy also offers a new strategy to process the acquired monitoring signals in other monitoring techniques. Automatic identification Microseismic monitoring Microseismic signals Blasting signals Underground rock excavation Dai, Feng verfasserin aut Liu, Yi verfasserin aut Li, Ang verfasserin aut Enthalten in Measurement Amsterdam [u.a.] : Elsevier Science, 1983 175 Online-Ressource (DE-627)320404927 (DE-600)2000550-7 (DE-576)259484342 nnns volume:175 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.21 Messtechnik AR 175 |
allfieldsGer |
10.1016/j.measurement.2021.109129 doi (DE-627)ELV005793203 (ELSEVIER)S0263-2241(21)00157-3 DE-627 ger DE-627 rda eng 660 DE-600 50.21 bkl Jiang, Ruochen verfasserin aut A novel method for automatic identification of rock fracture signals in microseismic monitoring 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to identify MS signals with high efficiency and accuracy. However, the identification work is inevitably disturbed by vibration signals from the blasting activities involved in rock/mining engineering. Currently, the classification work of MS and blasting signals is mainly carried out by the on-site operators based on their own experience, which is time-consuming and subjectively sensitive. In this work, a new discriminant method is developed to automatically recognize these signals based on their time-frequency spectrum characteristics to offer more reliable data for MS monitoring analysis. Singular value decomposition is adopted to reduce data volume and obtain unique features. Random Forest (RF) is applied to achieve automatic recognition and get the most important features based on the variation of ‘out-of-bag’ error and Gini Index. These most important features can be used to optimize the RF classifier. The numerical experiments are conducted to verify our new method. The results prove that the method reaches 95.99%±0.1% accuracy in 100 repetitions for events collected from the field, and the optimized RF produces a more accurate result (97%) using fewer characteristics, which is higher than the methods reported in the previous literature. The proposed method diminishes the sensitivity of operators in the classification and promotes the accuracy and efficiency of the identification of MS signals data in the application of MS monitoring technology. Moreover, this strategy also offers a new strategy to process the acquired monitoring signals in other monitoring techniques. Automatic identification Microseismic monitoring Microseismic signals Blasting signals Underground rock excavation Dai, Feng verfasserin aut Liu, Yi verfasserin aut Li, Ang verfasserin aut Enthalten in Measurement Amsterdam [u.a.] : Elsevier Science, 1983 175 Online-Ressource (DE-627)320404927 (DE-600)2000550-7 (DE-576)259484342 nnns volume:175 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.21 Messtechnik AR 175 |
allfieldsSound |
10.1016/j.measurement.2021.109129 doi (DE-627)ELV005793203 (ELSEVIER)S0263-2241(21)00157-3 DE-627 ger DE-627 rda eng 660 DE-600 50.21 bkl Jiang, Ruochen verfasserin aut A novel method for automatic identification of rock fracture signals in microseismic monitoring 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to identify MS signals with high efficiency and accuracy. However, the identification work is inevitably disturbed by vibration signals from the blasting activities involved in rock/mining engineering. Currently, the classification work of MS and blasting signals is mainly carried out by the on-site operators based on their own experience, which is time-consuming and subjectively sensitive. In this work, a new discriminant method is developed to automatically recognize these signals based on their time-frequency spectrum characteristics to offer more reliable data for MS monitoring analysis. Singular value decomposition is adopted to reduce data volume and obtain unique features. Random Forest (RF) is applied to achieve automatic recognition and get the most important features based on the variation of ‘out-of-bag’ error and Gini Index. These most important features can be used to optimize the RF classifier. The numerical experiments are conducted to verify our new method. The results prove that the method reaches 95.99%±0.1% accuracy in 100 repetitions for events collected from the field, and the optimized RF produces a more accurate result (97%) using fewer characteristics, which is higher than the methods reported in the previous literature. The proposed method diminishes the sensitivity of operators in the classification and promotes the accuracy and efficiency of the identification of MS signals data in the application of MS monitoring technology. Moreover, this strategy also offers a new strategy to process the acquired monitoring signals in other monitoring techniques. Automatic identification Microseismic monitoring Microseismic signals Blasting signals Underground rock excavation Dai, Feng verfasserin aut Liu, Yi verfasserin aut Li, Ang verfasserin aut Enthalten in Measurement Amsterdam [u.a.] : Elsevier Science, 1983 175 Online-Ressource (DE-627)320404927 (DE-600)2000550-7 (DE-576)259484342 nnns volume:175 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.21 Messtechnik AR 175 |
language |
English |
source |
Enthalten in Measurement 175 volume:175 |
sourceStr |
Enthalten in Measurement 175 volume:175 |
format_phy_str_mv |
Article |
bklname |
Messtechnik |
institution |
findex.gbv.de |
topic_facet |
Automatic identification Microseismic monitoring Microseismic signals Blasting signals Underground rock excavation |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Measurement |
authorswithroles_txt_mv |
Jiang, Ruochen @@aut@@ Dai, Feng @@aut@@ Liu, Yi @@aut@@ Li, Ang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320404927 |
dewey-sort |
3660 |
id |
ELV005793203 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005793203</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524153419.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.measurement.2021.109129</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005793203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-2241(21)00157-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Ruochen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel method for automatic identification of rock fracture signals in microseismic monitoring</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to identify MS signals with high efficiency and accuracy. However, the identification work is inevitably disturbed by vibration signals from the blasting activities involved in rock/mining engineering. Currently, the classification work of MS and blasting signals is mainly carried out by the on-site operators based on their own experience, which is time-consuming and subjectively sensitive. In this work, a new discriminant method is developed to automatically recognize these signals based on their time-frequency spectrum characteristics to offer more reliable data for MS monitoring analysis. Singular value decomposition is adopted to reduce data volume and obtain unique features. Random Forest (RF) is applied to achieve automatic recognition and get the most important features based on the variation of ‘out-of-bag’ error and Gini Index. These most important features can be used to optimize the RF classifier. The numerical experiments are conducted to verify our new method. The results prove that the method reaches 95.99%±0.1% accuracy in 100 repetitions for events collected from the field, and the optimized RF produces a more accurate result (97%) using fewer characteristics, which is higher than the methods reported in the previous literature. The proposed method diminishes the sensitivity of operators in the classification and promotes the accuracy and efficiency of the identification of MS signals data in the application of MS monitoring technology. Moreover, this strategy also offers a new strategy to process the acquired monitoring signals in other monitoring techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microseismic monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microseismic signals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blasting signals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Underground rock excavation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Measurement</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">175</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320404927</subfield><subfield code="w">(DE-600)2000550-7</subfield><subfield code="w">(DE-576)259484342</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:175</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.21</subfield><subfield code="j">Messtechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">175</subfield></datafield></record></collection>
|
author |
Jiang, Ruochen |
spellingShingle |
Jiang, Ruochen ddc 660 bkl 50.21 misc Automatic identification misc Microseismic monitoring misc Microseismic signals misc Blasting signals misc Underground rock excavation A novel method for automatic identification of rock fracture signals in microseismic monitoring |
authorStr |
Jiang, Ruochen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320404927 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 DE-600 50.21 bkl A novel method for automatic identification of rock fracture signals in microseismic monitoring Automatic identification Microseismic monitoring Microseismic signals Blasting signals Underground rock excavation |
topic |
ddc 660 bkl 50.21 misc Automatic identification misc Microseismic monitoring misc Microseismic signals misc Blasting signals misc Underground rock excavation |
topic_unstemmed |
ddc 660 bkl 50.21 misc Automatic identification misc Microseismic monitoring misc Microseismic signals misc Blasting signals misc Underground rock excavation |
topic_browse |
ddc 660 bkl 50.21 misc Automatic identification misc Microseismic monitoring misc Microseismic signals misc Blasting signals misc Underground rock excavation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Measurement |
hierarchy_parent_id |
320404927 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Measurement |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320404927 (DE-600)2000550-7 (DE-576)259484342 |
title |
A novel method for automatic identification of rock fracture signals in microseismic monitoring |
ctrlnum |
(DE-627)ELV005793203 (ELSEVIER)S0263-2241(21)00157-3 |
title_full |
A novel method for automatic identification of rock fracture signals in microseismic monitoring |
author_sort |
Jiang, Ruochen |
journal |
Measurement |
journalStr |
Measurement |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Jiang, Ruochen Dai, Feng Liu, Yi Li, Ang |
container_volume |
175 |
class |
660 DE-600 50.21 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Jiang, Ruochen |
doi_str_mv |
10.1016/j.measurement.2021.109129 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
a novel method for automatic identification of rock fracture signals in microseismic monitoring |
title_auth |
A novel method for automatic identification of rock fracture signals in microseismic monitoring |
abstract |
Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to identify MS signals with high efficiency and accuracy. However, the identification work is inevitably disturbed by vibration signals from the blasting activities involved in rock/mining engineering. Currently, the classification work of MS and blasting signals is mainly carried out by the on-site operators based on their own experience, which is time-consuming and subjectively sensitive. In this work, a new discriminant method is developed to automatically recognize these signals based on their time-frequency spectrum characteristics to offer more reliable data for MS monitoring analysis. Singular value decomposition is adopted to reduce data volume and obtain unique features. Random Forest (RF) is applied to achieve automatic recognition and get the most important features based on the variation of ‘out-of-bag’ error and Gini Index. These most important features can be used to optimize the RF classifier. The numerical experiments are conducted to verify our new method. The results prove that the method reaches 95.99%±0.1% accuracy in 100 repetitions for events collected from the field, and the optimized RF produces a more accurate result (97%) using fewer characteristics, which is higher than the methods reported in the previous literature. The proposed method diminishes the sensitivity of operators in the classification and promotes the accuracy and efficiency of the identification of MS signals data in the application of MS monitoring technology. Moreover, this strategy also offers a new strategy to process the acquired monitoring signals in other monitoring techniques. |
abstractGer |
Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to identify MS signals with high efficiency and accuracy. However, the identification work is inevitably disturbed by vibration signals from the blasting activities involved in rock/mining engineering. Currently, the classification work of MS and blasting signals is mainly carried out by the on-site operators based on their own experience, which is time-consuming and subjectively sensitive. In this work, a new discriminant method is developed to automatically recognize these signals based on their time-frequency spectrum characteristics to offer more reliable data for MS monitoring analysis. Singular value decomposition is adopted to reduce data volume and obtain unique features. Random Forest (RF) is applied to achieve automatic recognition and get the most important features based on the variation of ‘out-of-bag’ error and Gini Index. These most important features can be used to optimize the RF classifier. The numerical experiments are conducted to verify our new method. The results prove that the method reaches 95.99%±0.1% accuracy in 100 repetitions for events collected from the field, and the optimized RF produces a more accurate result (97%) using fewer characteristics, which is higher than the methods reported in the previous literature. The proposed method diminishes the sensitivity of operators in the classification and promotes the accuracy and efficiency of the identification of MS signals data in the application of MS monitoring technology. Moreover, this strategy also offers a new strategy to process the acquired monitoring signals in other monitoring techniques. |
abstract_unstemmed |
Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to identify MS signals with high efficiency and accuracy. However, the identification work is inevitably disturbed by vibration signals from the blasting activities involved in rock/mining engineering. Currently, the classification work of MS and blasting signals is mainly carried out by the on-site operators based on their own experience, which is time-consuming and subjectively sensitive. In this work, a new discriminant method is developed to automatically recognize these signals based on their time-frequency spectrum characteristics to offer more reliable data for MS monitoring analysis. Singular value decomposition is adopted to reduce data volume and obtain unique features. Random Forest (RF) is applied to achieve automatic recognition and get the most important features based on the variation of ‘out-of-bag’ error and Gini Index. These most important features can be used to optimize the RF classifier. The numerical experiments are conducted to verify our new method. The results prove that the method reaches 95.99%±0.1% accuracy in 100 repetitions for events collected from the field, and the optimized RF produces a more accurate result (97%) using fewer characteristics, which is higher than the methods reported in the previous literature. The proposed method diminishes the sensitivity of operators in the classification and promotes the accuracy and efficiency of the identification of MS signals data in the application of MS monitoring technology. Moreover, this strategy also offers a new strategy to process the acquired monitoring signals in other monitoring techniques. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A novel method for automatic identification of rock fracture signals in microseismic monitoring |
remote_bool |
true |
author2 |
Dai, Feng Liu, Yi Li, Ang |
author2Str |
Dai, Feng Liu, Yi Li, Ang |
ppnlink |
320404927 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.measurement.2021.109129 |
up_date |
2024-07-06T19:10:56.291Z |
_version_ |
1803858011795488768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005793203</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524153419.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.measurement.2021.109129</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005793203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-2241(21)00157-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Ruochen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel method for automatic identification of rock fracture signals in microseismic monitoring</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microseismic (MS) monitoring technology is able to offer 3-dimensional and real-time rupture characteristics of rocks by capturing and analyzing detectable elastic waves released from rock fracture, which has been widely applied in rock/mining engineering. The prerequisite of MS analysis is to identify MS signals with high efficiency and accuracy. However, the identification work is inevitably disturbed by vibration signals from the blasting activities involved in rock/mining engineering. Currently, the classification work of MS and blasting signals is mainly carried out by the on-site operators based on their own experience, which is time-consuming and subjectively sensitive. In this work, a new discriminant method is developed to automatically recognize these signals based on their time-frequency spectrum characteristics to offer more reliable data for MS monitoring analysis. Singular value decomposition is adopted to reduce data volume and obtain unique features. Random Forest (RF) is applied to achieve automatic recognition and get the most important features based on the variation of ‘out-of-bag’ error and Gini Index. These most important features can be used to optimize the RF classifier. The numerical experiments are conducted to verify our new method. The results prove that the method reaches 95.99%±0.1% accuracy in 100 repetitions for events collected from the field, and the optimized RF produces a more accurate result (97%) using fewer characteristics, which is higher than the methods reported in the previous literature. The proposed method diminishes the sensitivity of operators in the classification and promotes the accuracy and efficiency of the identification of MS signals data in the application of MS monitoring technology. Moreover, this strategy also offers a new strategy to process the acquired monitoring signals in other monitoring techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microseismic monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microseismic signals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blasting signals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Underground rock excavation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Measurement</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">175</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320404927</subfield><subfield code="w">(DE-600)2000550-7</subfield><subfield code="w">(DE-576)259484342</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:175</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.21</subfield><subfield code="j">Messtechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">175</subfield></datafield></record></collection>
|
score |
7.4007816 |