Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements
The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat tran...
Ausführliche Beschreibung
Autor*in: |
Liu, Yuyang [verfasserIn] Rao, Yu [verfasserIn] Yang, Li [verfasserIn] Xu, Yamin [verfasserIn] Terzis, Alexandros [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of thermal sciences - Amsterdam [u.a.] : Elsevier Science, 1996, 165 |
---|---|
Übergeordnetes Werk: |
volume:165 |
DOI / URN: |
10.1016/j.ijthermalsci.2021.106878 |
---|
Katalog-ID: |
ELV005820987 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005820987 | ||
003 | DE-627 | ||
005 | 20230524131557.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijthermalsci.2021.106878 |2 doi | |
035 | |a (DE-627)ELV005820987 | ||
035 | |a (ELSEVIER)S1290-0729(21)00047-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Liu, Yuyang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat transfer characteristics of a double-wall cooling configuration, which has an inline short film cooling hole arrangement. A transient infrared thermography technique was used in this study, and managed to obtain the external-wall adiabatic film cooling effectiveness and heat transfer coefficients during a single transient test. A series of steady-state Reynolds Averaged Navier-Stokes (RANS) simulations adopting polyhedral meshes and the Shear-Stress Transport (SST) k − ω turbulence model were conducted to characterize internal heat transfer as well as overall cooling effectiveness. Of interest are the influences of blowing ratio on flow and heat transfer, the characteristics with the inline short film cooling hole arrangement, and the effects of wall thickness on film cooling effectiveness. On the basis of validations with experiments, the numerical computations revealed that the internal heat transfer dominants double-wall cooling performance with the inline short hole arrangement. Comparing to the staggered arrangement, the inline arrangement can achieve comparable cooling performance with a lower pressure loss for the coolant, which is due to the better complementarity between internal and external heat transfer, as well as a less deteriorated parameter of net heat flux reduction (NHFR) at the high blowing ratio. Moreover, the short hole effect in the double-wall cooling leads to the decreased adiabatic film cooling effectiveness on the external surface especially when the BR is higher than 0.3 and the L/D f is lower than 1.5, and this is caused by the in-hole anti-vortex interacting with the mainstream flow. Additionally, the correspondences between the flow structure and heat transfer characteristics in the double-wall cooling are described in this paper. | ||
650 | 4 | |a Gas turbine | |
650 | 4 | |a Heat transfer | |
650 | 4 | |a Double-wall cooling | |
650 | 4 | |a Film cooling | |
650 | 4 | |a Short hole effect | |
700 | 1 | |a Rao, Yu |e verfasserin |4 aut | |
700 | 1 | |a Yang, Li |e verfasserin |4 aut | |
700 | 1 | |a Xu, Yamin |e verfasserin |4 aut | |
700 | 1 | |a Terzis, Alexandros |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of thermal sciences |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 165 |h Online-Ressource |w (DE-627)320509982 |w (DE-600)2013298-0 |w (DE-576)259271438 |x 1778-4166 |7 nnns |
773 | 1 | 8 | |g volume:165 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 165 |
author_variant |
y l yl y r yr l y ly y x yx a t at |
---|---|
matchkey_str |
article:17784166:2021----::lwnhatasecaatrsisfobealolnwtmliosoti |
hierarchy_sort_str |
2021 |
bklnumber |
50.38 |
publishDate |
2021 |
allfields |
10.1016/j.ijthermalsci.2021.106878 doi (DE-627)ELV005820987 (ELSEVIER)S1290-0729(21)00047-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Liu, Yuyang verfasserin aut Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat transfer characteristics of a double-wall cooling configuration, which has an inline short film cooling hole arrangement. A transient infrared thermography technique was used in this study, and managed to obtain the external-wall adiabatic film cooling effectiveness and heat transfer coefficients during a single transient test. A series of steady-state Reynolds Averaged Navier-Stokes (RANS) simulations adopting polyhedral meshes and the Shear-Stress Transport (SST) k − ω turbulence model were conducted to characterize internal heat transfer as well as overall cooling effectiveness. Of interest are the influences of blowing ratio on flow and heat transfer, the characteristics with the inline short film cooling hole arrangement, and the effects of wall thickness on film cooling effectiveness. On the basis of validations with experiments, the numerical computations revealed that the internal heat transfer dominants double-wall cooling performance with the inline short hole arrangement. Comparing to the staggered arrangement, the inline arrangement can achieve comparable cooling performance with a lower pressure loss for the coolant, which is due to the better complementarity between internal and external heat transfer, as well as a less deteriorated parameter of net heat flux reduction (NHFR) at the high blowing ratio. Moreover, the short hole effect in the double-wall cooling leads to the decreased adiabatic film cooling effectiveness on the external surface especially when the BR is higher than 0.3 and the L/D f is lower than 1.5, and this is caused by the in-hole anti-vortex interacting with the mainstream flow. Additionally, the correspondences between the flow structure and heat transfer characteristics in the double-wall cooling are described in this paper. Gas turbine Heat transfer Double-wall cooling Film cooling Short hole effect Rao, Yu verfasserin aut Yang, Li verfasserin aut Xu, Yamin verfasserin aut Terzis, Alexandros verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 165 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 165 |
spelling |
10.1016/j.ijthermalsci.2021.106878 doi (DE-627)ELV005820987 (ELSEVIER)S1290-0729(21)00047-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Liu, Yuyang verfasserin aut Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat transfer characteristics of a double-wall cooling configuration, which has an inline short film cooling hole arrangement. A transient infrared thermography technique was used in this study, and managed to obtain the external-wall adiabatic film cooling effectiveness and heat transfer coefficients during a single transient test. A series of steady-state Reynolds Averaged Navier-Stokes (RANS) simulations adopting polyhedral meshes and the Shear-Stress Transport (SST) k − ω turbulence model were conducted to characterize internal heat transfer as well as overall cooling effectiveness. Of interest are the influences of blowing ratio on flow and heat transfer, the characteristics with the inline short film cooling hole arrangement, and the effects of wall thickness on film cooling effectiveness. On the basis of validations with experiments, the numerical computations revealed that the internal heat transfer dominants double-wall cooling performance with the inline short hole arrangement. Comparing to the staggered arrangement, the inline arrangement can achieve comparable cooling performance with a lower pressure loss for the coolant, which is due to the better complementarity between internal and external heat transfer, as well as a less deteriorated parameter of net heat flux reduction (NHFR) at the high blowing ratio. Moreover, the short hole effect in the double-wall cooling leads to the decreased adiabatic film cooling effectiveness on the external surface especially when the BR is higher than 0.3 and the L/D f is lower than 1.5, and this is caused by the in-hole anti-vortex interacting with the mainstream flow. Additionally, the correspondences between the flow structure and heat transfer characteristics in the double-wall cooling are described in this paper. Gas turbine Heat transfer Double-wall cooling Film cooling Short hole effect Rao, Yu verfasserin aut Yang, Li verfasserin aut Xu, Yamin verfasserin aut Terzis, Alexandros verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 165 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 165 |
allfields_unstemmed |
10.1016/j.ijthermalsci.2021.106878 doi (DE-627)ELV005820987 (ELSEVIER)S1290-0729(21)00047-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Liu, Yuyang verfasserin aut Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat transfer characteristics of a double-wall cooling configuration, which has an inline short film cooling hole arrangement. A transient infrared thermography technique was used in this study, and managed to obtain the external-wall adiabatic film cooling effectiveness and heat transfer coefficients during a single transient test. A series of steady-state Reynolds Averaged Navier-Stokes (RANS) simulations adopting polyhedral meshes and the Shear-Stress Transport (SST) k − ω turbulence model were conducted to characterize internal heat transfer as well as overall cooling effectiveness. Of interest are the influences of blowing ratio on flow and heat transfer, the characteristics with the inline short film cooling hole arrangement, and the effects of wall thickness on film cooling effectiveness. On the basis of validations with experiments, the numerical computations revealed that the internal heat transfer dominants double-wall cooling performance with the inline short hole arrangement. Comparing to the staggered arrangement, the inline arrangement can achieve comparable cooling performance with a lower pressure loss for the coolant, which is due to the better complementarity between internal and external heat transfer, as well as a less deteriorated parameter of net heat flux reduction (NHFR) at the high blowing ratio. Moreover, the short hole effect in the double-wall cooling leads to the decreased adiabatic film cooling effectiveness on the external surface especially when the BR is higher than 0.3 and the L/D f is lower than 1.5, and this is caused by the in-hole anti-vortex interacting with the mainstream flow. Additionally, the correspondences between the flow structure and heat transfer characteristics in the double-wall cooling are described in this paper. Gas turbine Heat transfer Double-wall cooling Film cooling Short hole effect Rao, Yu verfasserin aut Yang, Li verfasserin aut Xu, Yamin verfasserin aut Terzis, Alexandros verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 165 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 165 |
allfieldsGer |
10.1016/j.ijthermalsci.2021.106878 doi (DE-627)ELV005820987 (ELSEVIER)S1290-0729(21)00047-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Liu, Yuyang verfasserin aut Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat transfer characteristics of a double-wall cooling configuration, which has an inline short film cooling hole arrangement. A transient infrared thermography technique was used in this study, and managed to obtain the external-wall adiabatic film cooling effectiveness and heat transfer coefficients during a single transient test. A series of steady-state Reynolds Averaged Navier-Stokes (RANS) simulations adopting polyhedral meshes and the Shear-Stress Transport (SST) k − ω turbulence model were conducted to characterize internal heat transfer as well as overall cooling effectiveness. Of interest are the influences of blowing ratio on flow and heat transfer, the characteristics with the inline short film cooling hole arrangement, and the effects of wall thickness on film cooling effectiveness. On the basis of validations with experiments, the numerical computations revealed that the internal heat transfer dominants double-wall cooling performance with the inline short hole arrangement. Comparing to the staggered arrangement, the inline arrangement can achieve comparable cooling performance with a lower pressure loss for the coolant, which is due to the better complementarity between internal and external heat transfer, as well as a less deteriorated parameter of net heat flux reduction (NHFR) at the high blowing ratio. Moreover, the short hole effect in the double-wall cooling leads to the decreased adiabatic film cooling effectiveness on the external surface especially when the BR is higher than 0.3 and the L/D f is lower than 1.5, and this is caused by the in-hole anti-vortex interacting with the mainstream flow. Additionally, the correspondences between the flow structure and heat transfer characteristics in the double-wall cooling are described in this paper. Gas turbine Heat transfer Double-wall cooling Film cooling Short hole effect Rao, Yu verfasserin aut Yang, Li verfasserin aut Xu, Yamin verfasserin aut Terzis, Alexandros verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 165 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 165 |
allfieldsSound |
10.1016/j.ijthermalsci.2021.106878 doi (DE-627)ELV005820987 (ELSEVIER)S1290-0729(21)00047-8 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Liu, Yuyang verfasserin aut Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat transfer characteristics of a double-wall cooling configuration, which has an inline short film cooling hole arrangement. A transient infrared thermography technique was used in this study, and managed to obtain the external-wall adiabatic film cooling effectiveness and heat transfer coefficients during a single transient test. A series of steady-state Reynolds Averaged Navier-Stokes (RANS) simulations adopting polyhedral meshes and the Shear-Stress Transport (SST) k − ω turbulence model were conducted to characterize internal heat transfer as well as overall cooling effectiveness. Of interest are the influences of blowing ratio on flow and heat transfer, the characteristics with the inline short film cooling hole arrangement, and the effects of wall thickness on film cooling effectiveness. On the basis of validations with experiments, the numerical computations revealed that the internal heat transfer dominants double-wall cooling performance with the inline short hole arrangement. Comparing to the staggered arrangement, the inline arrangement can achieve comparable cooling performance with a lower pressure loss for the coolant, which is due to the better complementarity between internal and external heat transfer, as well as a less deteriorated parameter of net heat flux reduction (NHFR) at the high blowing ratio. Moreover, the short hole effect in the double-wall cooling leads to the decreased adiabatic film cooling effectiveness on the external surface especially when the BR is higher than 0.3 and the L/D f is lower than 1.5, and this is caused by the in-hole anti-vortex interacting with the mainstream flow. Additionally, the correspondences between the flow structure and heat transfer characteristics in the double-wall cooling are described in this paper. Gas turbine Heat transfer Double-wall cooling Film cooling Short hole effect Rao, Yu verfasserin aut Yang, Li verfasserin aut Xu, Yamin verfasserin aut Terzis, Alexandros verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 165 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 165 |
language |
English |
source |
Enthalten in International journal of thermal sciences 165 volume:165 |
sourceStr |
Enthalten in International journal of thermal sciences 165 volume:165 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Gas turbine Heat transfer Double-wall cooling Film cooling Short hole effect |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of thermal sciences |
authorswithroles_txt_mv |
Liu, Yuyang @@aut@@ Rao, Yu @@aut@@ Yang, Li @@aut@@ Xu, Yamin @@aut@@ Terzis, Alexandros @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320509982 |
dewey-sort |
3530 |
id |
ELV005820987 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005820987</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131557.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijthermalsci.2021.106878</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005820987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1290-0729(21)00047-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yuyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat transfer characteristics of a double-wall cooling configuration, which has an inline short film cooling hole arrangement. A transient infrared thermography technique was used in this study, and managed to obtain the external-wall adiabatic film cooling effectiveness and heat transfer coefficients during a single transient test. A series of steady-state Reynolds Averaged Navier-Stokes (RANS) simulations adopting polyhedral meshes and the Shear-Stress Transport (SST) k − ω turbulence model were conducted to characterize internal heat transfer as well as overall cooling effectiveness. Of interest are the influences of blowing ratio on flow and heat transfer, the characteristics with the inline short film cooling hole arrangement, and the effects of wall thickness on film cooling effectiveness. On the basis of validations with experiments, the numerical computations revealed that the internal heat transfer dominants double-wall cooling performance with the inline short hole arrangement. Comparing to the staggered arrangement, the inline arrangement can achieve comparable cooling performance with a lower pressure loss for the coolant, which is due to the better complementarity between internal and external heat transfer, as well as a less deteriorated parameter of net heat flux reduction (NHFR) at the high blowing ratio. Moreover, the short hole effect in the double-wall cooling leads to the decreased adiabatic film cooling effectiveness on the external surface especially when the BR is higher than 0.3 and the L/D f is lower than 1.5, and this is caused by the in-hole anti-vortex interacting with the mainstream flow. Additionally, the correspondences between the flow structure and heat transfer characteristics in the double-wall cooling are described in this paper.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas turbine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double-wall cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Film cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Short hole effect</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rao, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yamin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terzis, Alexandros</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermal sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">165</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320509982</subfield><subfield code="w">(DE-600)2013298-0</subfield><subfield code="w">(DE-576)259271438</subfield><subfield code="x">1778-4166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield></datafield></record></collection>
|
author |
Liu, Yuyang |
spellingShingle |
Liu, Yuyang ddc 530 bkl 50.38 misc Gas turbine misc Heat transfer misc Double-wall cooling misc Film cooling misc Short hole effect Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements |
authorStr |
Liu, Yuyang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320509982 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1778-4166 |
topic_title |
530 620 DE-600 50.38 bkl Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements Gas turbine Heat transfer Double-wall cooling Film cooling Short hole effect |
topic |
ddc 530 bkl 50.38 misc Gas turbine misc Heat transfer misc Double-wall cooling misc Film cooling misc Short hole effect |
topic_unstemmed |
ddc 530 bkl 50.38 misc Gas turbine misc Heat transfer misc Double-wall cooling misc Film cooling misc Short hole effect |
topic_browse |
ddc 530 bkl 50.38 misc Gas turbine misc Heat transfer misc Double-wall cooling misc Film cooling misc Short hole effect |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of thermal sciences |
hierarchy_parent_id |
320509982 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
International journal of thermal sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 |
title |
Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements |
ctrlnum |
(DE-627)ELV005820987 (ELSEVIER)S1290-0729(21)00047-8 |
title_full |
Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements |
author_sort |
Liu, Yuyang |
journal |
International journal of thermal sciences |
journalStr |
International journal of thermal sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Yuyang Rao, Yu Yang, Li Xu, Yamin Terzis, Alexandros |
container_volume |
165 |
class |
530 620 DE-600 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Yuyang |
doi_str_mv |
10.1016/j.ijthermalsci.2021.106878 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements |
title_auth |
Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements |
abstract |
The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat transfer characteristics of a double-wall cooling configuration, which has an inline short film cooling hole arrangement. A transient infrared thermography technique was used in this study, and managed to obtain the external-wall adiabatic film cooling effectiveness and heat transfer coefficients during a single transient test. A series of steady-state Reynolds Averaged Navier-Stokes (RANS) simulations adopting polyhedral meshes and the Shear-Stress Transport (SST) k − ω turbulence model were conducted to characterize internal heat transfer as well as overall cooling effectiveness. Of interest are the influences of blowing ratio on flow and heat transfer, the characteristics with the inline short film cooling hole arrangement, and the effects of wall thickness on film cooling effectiveness. On the basis of validations with experiments, the numerical computations revealed that the internal heat transfer dominants double-wall cooling performance with the inline short hole arrangement. Comparing to the staggered arrangement, the inline arrangement can achieve comparable cooling performance with a lower pressure loss for the coolant, which is due to the better complementarity between internal and external heat transfer, as well as a less deteriorated parameter of net heat flux reduction (NHFR) at the high blowing ratio. Moreover, the short hole effect in the double-wall cooling leads to the decreased adiabatic film cooling effectiveness on the external surface especially when the BR is higher than 0.3 and the L/D f is lower than 1.5, and this is caused by the in-hole anti-vortex interacting with the mainstream flow. Additionally, the correspondences between the flow structure and heat transfer characteristics in the double-wall cooling are described in this paper. |
abstractGer |
The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat transfer characteristics of a double-wall cooling configuration, which has an inline short film cooling hole arrangement. A transient infrared thermography technique was used in this study, and managed to obtain the external-wall adiabatic film cooling effectiveness and heat transfer coefficients during a single transient test. A series of steady-state Reynolds Averaged Navier-Stokes (RANS) simulations adopting polyhedral meshes and the Shear-Stress Transport (SST) k − ω turbulence model were conducted to characterize internal heat transfer as well as overall cooling effectiveness. Of interest are the influences of blowing ratio on flow and heat transfer, the characteristics with the inline short film cooling hole arrangement, and the effects of wall thickness on film cooling effectiveness. On the basis of validations with experiments, the numerical computations revealed that the internal heat transfer dominants double-wall cooling performance with the inline short hole arrangement. Comparing to the staggered arrangement, the inline arrangement can achieve comparable cooling performance with a lower pressure loss for the coolant, which is due to the better complementarity between internal and external heat transfer, as well as a less deteriorated parameter of net heat flux reduction (NHFR) at the high blowing ratio. Moreover, the short hole effect in the double-wall cooling leads to the decreased adiabatic film cooling effectiveness on the external surface especially when the BR is higher than 0.3 and the L/D f is lower than 1.5, and this is caused by the in-hole anti-vortex interacting with the mainstream flow. Additionally, the correspondences between the flow structure and heat transfer characteristics in the double-wall cooling are described in this paper. |
abstract_unstemmed |
The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat transfer characteristics of a double-wall cooling configuration, which has an inline short film cooling hole arrangement. A transient infrared thermography technique was used in this study, and managed to obtain the external-wall adiabatic film cooling effectiveness and heat transfer coefficients during a single transient test. A series of steady-state Reynolds Averaged Navier-Stokes (RANS) simulations adopting polyhedral meshes and the Shear-Stress Transport (SST) k − ω turbulence model were conducted to characterize internal heat transfer as well as overall cooling effectiveness. Of interest are the influences of blowing ratio on flow and heat transfer, the characteristics with the inline short film cooling hole arrangement, and the effects of wall thickness on film cooling effectiveness. On the basis of validations with experiments, the numerical computations revealed that the internal heat transfer dominants double-wall cooling performance with the inline short hole arrangement. Comparing to the staggered arrangement, the inline arrangement can achieve comparable cooling performance with a lower pressure loss for the coolant, which is due to the better complementarity between internal and external heat transfer, as well as a less deteriorated parameter of net heat flux reduction (NHFR) at the high blowing ratio. Moreover, the short hole effect in the double-wall cooling leads to the decreased adiabatic film cooling effectiveness on the external surface especially when the BR is higher than 0.3 and the L/D f is lower than 1.5, and this is caused by the in-hole anti-vortex interacting with the mainstream flow. Additionally, the correspondences between the flow structure and heat transfer characteristics in the double-wall cooling are described in this paper. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements |
remote_bool |
true |
author2 |
Rao, Yu Yang, Li Xu, Yamin Terzis, Alexandros |
author2Str |
Rao, Yu Yang, Li Xu, Yamin Terzis, Alexandros |
ppnlink |
320509982 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijthermalsci.2021.106878 |
up_date |
2024-07-06T19:16:40.523Z |
_version_ |
1803858372747853824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005820987</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131557.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijthermalsci.2021.106878</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005820987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1290-0729(21)00047-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yuyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The double-wall cooling systems with internal jet impingements and external film cooling are greatly applicable in modern turbine blades, providing enhanced cooling capabilities compared to the conventional passage cooling. This paper presents experimental and numerical results of flow and heat transfer characteristics of a double-wall cooling configuration, which has an inline short film cooling hole arrangement. A transient infrared thermography technique was used in this study, and managed to obtain the external-wall adiabatic film cooling effectiveness and heat transfer coefficients during a single transient test. A series of steady-state Reynolds Averaged Navier-Stokes (RANS) simulations adopting polyhedral meshes and the Shear-Stress Transport (SST) k − ω turbulence model were conducted to characterize internal heat transfer as well as overall cooling effectiveness. Of interest are the influences of blowing ratio on flow and heat transfer, the characteristics with the inline short film cooling hole arrangement, and the effects of wall thickness on film cooling effectiveness. On the basis of validations with experiments, the numerical computations revealed that the internal heat transfer dominants double-wall cooling performance with the inline short hole arrangement. Comparing to the staggered arrangement, the inline arrangement can achieve comparable cooling performance with a lower pressure loss for the coolant, which is due to the better complementarity between internal and external heat transfer, as well as a less deteriorated parameter of net heat flux reduction (NHFR) at the high blowing ratio. Moreover, the short hole effect in the double-wall cooling leads to the decreased adiabatic film cooling effectiveness on the external surface especially when the BR is higher than 0.3 and the L/D f is lower than 1.5, and this is caused by the in-hole anti-vortex interacting with the mainstream flow. Additionally, the correspondences between the flow structure and heat transfer characteristics in the double-wall cooling are described in this paper.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas turbine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double-wall cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Film cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Short hole effect</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rao, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yamin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terzis, Alexandros</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermal sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">165</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320509982</subfield><subfield code="w">(DE-600)2013298-0</subfield><subfield code="w">(DE-576)259271438</subfield><subfield code="x">1778-4166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield></datafield></record></collection>
|
score |
7.403078 |