Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening
Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength....
Ausführliche Beschreibung
Autor*in: |
Xing, Ziyu [verfasserIn] Lu, Haibao [verfasserIn] Fu, Yong Qing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Polymer - Oxford : Elsevier Science, 1960, 222 |
---|---|
Übergeordnetes Werk: |
volume:222 |
DOI / URN: |
10.1016/j.polymer.2021.123656 |
---|
Katalog-ID: |
ELV005840333 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005840333 | ||
003 | DE-627 | ||
005 | 20230524143200.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.polymer.2021.123656 |2 doi | |
035 | |a (DE-627)ELV005840333 | ||
035 | |a (ELSEVIER)S0032-3861(21)00279-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 35.80 |2 bkl | ||
084 | |a 51.70 |2 bkl | ||
084 | |a 58.22 |2 bkl | ||
100 | 1 | |a Xing, Ziyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength. However, the route from which the hydrophobic segments are assembled into micelles during microphase separations, and their thermoresponsive toughening mechanisms are not fully understood. In this study, a local conservation law of rubber elasticity is firstly formulated to describe the micellization and collapse of polymer networks in hydrogels, during which the thermoresponsive segments undergo a microphase separation. Flory-Huggins theory, interfacial free-energy equation and the extended Maxwell model are then employed to model the thermodynamics of micellization and microphase separations in the hydrogel, in which the polymer networks are composed of both hydrophilic and thermoresponsive segments. The toughening mechanism is further explored and discussed based on the proposed models. Finally, the proposed models have been verified using the experimental results reported in the literature. This study provides a new mechanism of local conservation law for rubber elasticity in hydrogels and also critical insights into the physical principles which govern the molecular self-assembly. | ||
650 | 4 | |a Hydrogel | |
650 | 4 | |a Rubber elasticity | |
650 | 4 | |a Microphase separation | |
650 | 4 | |a Micellization | |
700 | 1 | |a Lu, Haibao |e verfasserin |4 aut | |
700 | 1 | |a Fu, Yong Qing |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Polymer |d Oxford : Elsevier Science, 1960 |g 222 |h Online-Ressource |w (DE-627)32051613X |w (DE-600)2013972-X |w (DE-576)093888422 |x 0032-3861 |7 nnns |
773 | 1 | 8 | |g volume:222 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2411 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.80 |j Makromolekulare Chemie |
936 | b | k | |a 51.70 |j Polymerwerkstoffe |j Kunststoffe |x Werkstoffkunde |
936 | b | k | |a 58.22 |j Kunststofftechnologie |
951 | |a AR | ||
952 | |d 222 |
author_variant |
z x zx h l hl y q f yq yqf |
---|---|
matchkey_str |
article:00323861:2021----::oacnevtolwfubrlsiiynyrglewrsnegigirp |
hierarchy_sort_str |
2021 |
bklnumber |
35.80 51.70 58.22 |
publishDate |
2021 |
allfields |
10.1016/j.polymer.2021.123656 doi (DE-627)ELV005840333 (ELSEVIER)S0032-3861(21)00279-2 DE-627 ger DE-627 rda eng 540 DE-600 35.80 bkl 51.70 bkl 58.22 bkl Xing, Ziyu verfasserin aut Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength. However, the route from which the hydrophobic segments are assembled into micelles during microphase separations, and their thermoresponsive toughening mechanisms are not fully understood. In this study, a local conservation law of rubber elasticity is firstly formulated to describe the micellization and collapse of polymer networks in hydrogels, during which the thermoresponsive segments undergo a microphase separation. Flory-Huggins theory, interfacial free-energy equation and the extended Maxwell model are then employed to model the thermodynamics of micellization and microphase separations in the hydrogel, in which the polymer networks are composed of both hydrophilic and thermoresponsive segments. The toughening mechanism is further explored and discussed based on the proposed models. Finally, the proposed models have been verified using the experimental results reported in the literature. This study provides a new mechanism of local conservation law for rubber elasticity in hydrogels and also critical insights into the physical principles which govern the molecular self-assembly. Hydrogel Rubber elasticity Microphase separation Micellization Lu, Haibao verfasserin aut Fu, Yong Qing verfasserin aut Enthalten in Polymer Oxford : Elsevier Science, 1960 222 Online-Ressource (DE-627)32051613X (DE-600)2013972-X (DE-576)093888422 0032-3861 nnns volume:222 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.80 Makromolekulare Chemie 51.70 Polymerwerkstoffe Kunststoffe Werkstoffkunde 58.22 Kunststofftechnologie AR 222 |
spelling |
10.1016/j.polymer.2021.123656 doi (DE-627)ELV005840333 (ELSEVIER)S0032-3861(21)00279-2 DE-627 ger DE-627 rda eng 540 DE-600 35.80 bkl 51.70 bkl 58.22 bkl Xing, Ziyu verfasserin aut Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength. However, the route from which the hydrophobic segments are assembled into micelles during microphase separations, and their thermoresponsive toughening mechanisms are not fully understood. In this study, a local conservation law of rubber elasticity is firstly formulated to describe the micellization and collapse of polymer networks in hydrogels, during which the thermoresponsive segments undergo a microphase separation. Flory-Huggins theory, interfacial free-energy equation and the extended Maxwell model are then employed to model the thermodynamics of micellization and microphase separations in the hydrogel, in which the polymer networks are composed of both hydrophilic and thermoresponsive segments. The toughening mechanism is further explored and discussed based on the proposed models. Finally, the proposed models have been verified using the experimental results reported in the literature. This study provides a new mechanism of local conservation law for rubber elasticity in hydrogels and also critical insights into the physical principles which govern the molecular self-assembly. Hydrogel Rubber elasticity Microphase separation Micellization Lu, Haibao verfasserin aut Fu, Yong Qing verfasserin aut Enthalten in Polymer Oxford : Elsevier Science, 1960 222 Online-Ressource (DE-627)32051613X (DE-600)2013972-X (DE-576)093888422 0032-3861 nnns volume:222 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.80 Makromolekulare Chemie 51.70 Polymerwerkstoffe Kunststoffe Werkstoffkunde 58.22 Kunststofftechnologie AR 222 |
allfields_unstemmed |
10.1016/j.polymer.2021.123656 doi (DE-627)ELV005840333 (ELSEVIER)S0032-3861(21)00279-2 DE-627 ger DE-627 rda eng 540 DE-600 35.80 bkl 51.70 bkl 58.22 bkl Xing, Ziyu verfasserin aut Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength. However, the route from which the hydrophobic segments are assembled into micelles during microphase separations, and their thermoresponsive toughening mechanisms are not fully understood. In this study, a local conservation law of rubber elasticity is firstly formulated to describe the micellization and collapse of polymer networks in hydrogels, during which the thermoresponsive segments undergo a microphase separation. Flory-Huggins theory, interfacial free-energy equation and the extended Maxwell model are then employed to model the thermodynamics of micellization and microphase separations in the hydrogel, in which the polymer networks are composed of both hydrophilic and thermoresponsive segments. The toughening mechanism is further explored and discussed based on the proposed models. Finally, the proposed models have been verified using the experimental results reported in the literature. This study provides a new mechanism of local conservation law for rubber elasticity in hydrogels and also critical insights into the physical principles which govern the molecular self-assembly. Hydrogel Rubber elasticity Microphase separation Micellization Lu, Haibao verfasserin aut Fu, Yong Qing verfasserin aut Enthalten in Polymer Oxford : Elsevier Science, 1960 222 Online-Ressource (DE-627)32051613X (DE-600)2013972-X (DE-576)093888422 0032-3861 nnns volume:222 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.80 Makromolekulare Chemie 51.70 Polymerwerkstoffe Kunststoffe Werkstoffkunde 58.22 Kunststofftechnologie AR 222 |
allfieldsGer |
10.1016/j.polymer.2021.123656 doi (DE-627)ELV005840333 (ELSEVIER)S0032-3861(21)00279-2 DE-627 ger DE-627 rda eng 540 DE-600 35.80 bkl 51.70 bkl 58.22 bkl Xing, Ziyu verfasserin aut Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength. However, the route from which the hydrophobic segments are assembled into micelles during microphase separations, and their thermoresponsive toughening mechanisms are not fully understood. In this study, a local conservation law of rubber elasticity is firstly formulated to describe the micellization and collapse of polymer networks in hydrogels, during which the thermoresponsive segments undergo a microphase separation. Flory-Huggins theory, interfacial free-energy equation and the extended Maxwell model are then employed to model the thermodynamics of micellization and microphase separations in the hydrogel, in which the polymer networks are composed of both hydrophilic and thermoresponsive segments. The toughening mechanism is further explored and discussed based on the proposed models. Finally, the proposed models have been verified using the experimental results reported in the literature. This study provides a new mechanism of local conservation law for rubber elasticity in hydrogels and also critical insights into the physical principles which govern the molecular self-assembly. Hydrogel Rubber elasticity Microphase separation Micellization Lu, Haibao verfasserin aut Fu, Yong Qing verfasserin aut Enthalten in Polymer Oxford : Elsevier Science, 1960 222 Online-Ressource (DE-627)32051613X (DE-600)2013972-X (DE-576)093888422 0032-3861 nnns volume:222 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.80 Makromolekulare Chemie 51.70 Polymerwerkstoffe Kunststoffe Werkstoffkunde 58.22 Kunststofftechnologie AR 222 |
allfieldsSound |
10.1016/j.polymer.2021.123656 doi (DE-627)ELV005840333 (ELSEVIER)S0032-3861(21)00279-2 DE-627 ger DE-627 rda eng 540 DE-600 35.80 bkl 51.70 bkl 58.22 bkl Xing, Ziyu verfasserin aut Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength. However, the route from which the hydrophobic segments are assembled into micelles during microphase separations, and their thermoresponsive toughening mechanisms are not fully understood. In this study, a local conservation law of rubber elasticity is firstly formulated to describe the micellization and collapse of polymer networks in hydrogels, during which the thermoresponsive segments undergo a microphase separation. Flory-Huggins theory, interfacial free-energy equation and the extended Maxwell model are then employed to model the thermodynamics of micellization and microphase separations in the hydrogel, in which the polymer networks are composed of both hydrophilic and thermoresponsive segments. The toughening mechanism is further explored and discussed based on the proposed models. Finally, the proposed models have been verified using the experimental results reported in the literature. This study provides a new mechanism of local conservation law for rubber elasticity in hydrogels and also critical insights into the physical principles which govern the molecular self-assembly. Hydrogel Rubber elasticity Microphase separation Micellization Lu, Haibao verfasserin aut Fu, Yong Qing verfasserin aut Enthalten in Polymer Oxford : Elsevier Science, 1960 222 Online-Ressource (DE-627)32051613X (DE-600)2013972-X (DE-576)093888422 0032-3861 nnns volume:222 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.80 Makromolekulare Chemie 51.70 Polymerwerkstoffe Kunststoffe Werkstoffkunde 58.22 Kunststofftechnologie AR 222 |
language |
English |
source |
Enthalten in Polymer 222 volume:222 |
sourceStr |
Enthalten in Polymer 222 volume:222 |
format_phy_str_mv |
Article |
bklname |
Makromolekulare Chemie Polymerwerkstoffe Kunststoffe Kunststofftechnologie |
institution |
findex.gbv.de |
topic_facet |
Hydrogel Rubber elasticity Microphase separation Micellization |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Polymer |
authorswithroles_txt_mv |
Xing, Ziyu @@aut@@ Lu, Haibao @@aut@@ Fu, Yong Qing @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
32051613X |
dewey-sort |
3540 |
id |
ELV005840333 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005840333</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143200.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.polymer.2021.123656</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005840333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0032-3861(21)00279-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xing, Ziyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength. However, the route from which the hydrophobic segments are assembled into micelles during microphase separations, and their thermoresponsive toughening mechanisms are not fully understood. In this study, a local conservation law of rubber elasticity is firstly formulated to describe the micellization and collapse of polymer networks in hydrogels, during which the thermoresponsive segments undergo a microphase separation. Flory-Huggins theory, interfacial free-energy equation and the extended Maxwell model are then employed to model the thermodynamics of micellization and microphase separations in the hydrogel, in which the polymer networks are composed of both hydrophilic and thermoresponsive segments. The toughening mechanism is further explored and discussed based on the proposed models. Finally, the proposed models have been verified using the experimental results reported in the literature. This study provides a new mechanism of local conservation law for rubber elasticity in hydrogels and also critical insights into the physical principles which govern the molecular self-assembly.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rubber elasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microphase separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Micellization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Haibao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Yong Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer</subfield><subfield code="d">Oxford : Elsevier Science, 1960</subfield><subfield code="g">222</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32051613X</subfield><subfield code="w">(DE-600)2013972-X</subfield><subfield code="w">(DE-576)093888422</subfield><subfield code="x">0032-3861</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:222</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="j">Makromolekulare Chemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.70</subfield><subfield code="j">Polymerwerkstoffe</subfield><subfield code="j">Kunststoffe</subfield><subfield code="x">Werkstoffkunde</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.22</subfield><subfield code="j">Kunststofftechnologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">222</subfield></datafield></record></collection>
|
author |
Xing, Ziyu |
spellingShingle |
Xing, Ziyu ddc 540 bkl 35.80 bkl 51.70 bkl 58.22 misc Hydrogel misc Rubber elasticity misc Microphase separation misc Micellization Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening |
authorStr |
Xing, Ziyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32051613X |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0032-3861 |
topic_title |
540 DE-600 35.80 bkl 51.70 bkl 58.22 bkl Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening Hydrogel Rubber elasticity Microphase separation Micellization |
topic |
ddc 540 bkl 35.80 bkl 51.70 bkl 58.22 misc Hydrogel misc Rubber elasticity misc Microphase separation misc Micellization |
topic_unstemmed |
ddc 540 bkl 35.80 bkl 51.70 bkl 58.22 misc Hydrogel misc Rubber elasticity misc Microphase separation misc Micellization |
topic_browse |
ddc 540 bkl 35.80 bkl 51.70 bkl 58.22 misc Hydrogel misc Rubber elasticity misc Microphase separation misc Micellization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Polymer |
hierarchy_parent_id |
32051613X |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Polymer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32051613X (DE-600)2013972-X (DE-576)093888422 |
title |
Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening |
ctrlnum |
(DE-627)ELV005840333 (ELSEVIER)S0032-3861(21)00279-2 |
title_full |
Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening |
author_sort |
Xing, Ziyu |
journal |
Polymer |
journalStr |
Polymer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Xing, Ziyu Lu, Haibao Fu, Yong Qing |
container_volume |
222 |
class |
540 DE-600 35.80 bkl 51.70 bkl 58.22 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xing, Ziyu |
doi_str_mv |
10.1016/j.polymer.2021.123656 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening |
title_auth |
Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening |
abstract |
Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength. However, the route from which the hydrophobic segments are assembled into micelles during microphase separations, and their thermoresponsive toughening mechanisms are not fully understood. In this study, a local conservation law of rubber elasticity is firstly formulated to describe the micellization and collapse of polymer networks in hydrogels, during which the thermoresponsive segments undergo a microphase separation. Flory-Huggins theory, interfacial free-energy equation and the extended Maxwell model are then employed to model the thermodynamics of micellization and microphase separations in the hydrogel, in which the polymer networks are composed of both hydrophilic and thermoresponsive segments. The toughening mechanism is further explored and discussed based on the proposed models. Finally, the proposed models have been verified using the experimental results reported in the literature. This study provides a new mechanism of local conservation law for rubber elasticity in hydrogels and also critical insights into the physical principles which govern the molecular self-assembly. |
abstractGer |
Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength. However, the route from which the hydrophobic segments are assembled into micelles during microphase separations, and their thermoresponsive toughening mechanisms are not fully understood. In this study, a local conservation law of rubber elasticity is firstly formulated to describe the micellization and collapse of polymer networks in hydrogels, during which the thermoresponsive segments undergo a microphase separation. Flory-Huggins theory, interfacial free-energy equation and the extended Maxwell model are then employed to model the thermodynamics of micellization and microphase separations in the hydrogel, in which the polymer networks are composed of both hydrophilic and thermoresponsive segments. The toughening mechanism is further explored and discussed based on the proposed models. Finally, the proposed models have been verified using the experimental results reported in the literature. This study provides a new mechanism of local conservation law for rubber elasticity in hydrogels and also critical insights into the physical principles which govern the molecular self-assembly. |
abstract_unstemmed |
Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength. However, the route from which the hydrophobic segments are assembled into micelles during microphase separations, and their thermoresponsive toughening mechanisms are not fully understood. In this study, a local conservation law of rubber elasticity is firstly formulated to describe the micellization and collapse of polymer networks in hydrogels, during which the thermoresponsive segments undergo a microphase separation. Flory-Huggins theory, interfacial free-energy equation and the extended Maxwell model are then employed to model the thermodynamics of micellization and microphase separations in the hydrogel, in which the polymer networks are composed of both hydrophilic and thermoresponsive segments. The toughening mechanism is further explored and discussed based on the proposed models. Finally, the proposed models have been verified using the experimental results reported in the literature. This study provides a new mechanism of local conservation law for rubber elasticity in hydrogels and also critical insights into the physical principles which govern the molecular self-assembly. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening |
remote_bool |
true |
author2 |
Lu, Haibao Fu, Yong Qing |
author2Str |
Lu, Haibao Fu, Yong Qing |
ppnlink |
32051613X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.polymer.2021.123656 |
up_date |
2024-07-06T19:20:40.523Z |
_version_ |
1803858624406093824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005840333</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143200.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.polymer.2021.123656</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005840333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0032-3861(21)00279-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xing, Ziyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local conservation law of rubber elasticity in hydrogel networks undergoing microphase separation and toughening</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermoresponsive polymer segments have been reported to induce lateral microphase separations due to their switching transitions from a hydrophilic state to a hydrophobic one in hydrogels, which result in shrinkage and collapse of the polymer networks and significantly improved mechanical strength. However, the route from which the hydrophobic segments are assembled into micelles during microphase separations, and their thermoresponsive toughening mechanisms are not fully understood. In this study, a local conservation law of rubber elasticity is firstly formulated to describe the micellization and collapse of polymer networks in hydrogels, during which the thermoresponsive segments undergo a microphase separation. Flory-Huggins theory, interfacial free-energy equation and the extended Maxwell model are then employed to model the thermodynamics of micellization and microphase separations in the hydrogel, in which the polymer networks are composed of both hydrophilic and thermoresponsive segments. The toughening mechanism is further explored and discussed based on the proposed models. Finally, the proposed models have been verified using the experimental results reported in the literature. This study provides a new mechanism of local conservation law for rubber elasticity in hydrogels and also critical insights into the physical principles which govern the molecular self-assembly.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rubber elasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microphase separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Micellization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Haibao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Yong Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer</subfield><subfield code="d">Oxford : Elsevier Science, 1960</subfield><subfield code="g">222</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32051613X</subfield><subfield code="w">(DE-600)2013972-X</subfield><subfield code="w">(DE-576)093888422</subfield><subfield code="x">0032-3861</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:222</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="j">Makromolekulare Chemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.70</subfield><subfield code="j">Polymerwerkstoffe</subfield><subfield code="j">Kunststoffe</subfield><subfield code="x">Werkstoffkunde</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.22</subfield><subfield code="j">Kunststofftechnologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">222</subfield></datafield></record></collection>
|
score |
7.4004354 |