CoS
Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the...
Ausführliche Beschreibung
Autor*in: |
Xie, Wangjing [verfasserIn] Liu, Kang [verfasserIn] Shi, Guodong [verfasserIn] Fu, Xinliang [verfasserIn] Chen, Xiaojie [verfasserIn] Fan, Zixiong [verfasserIn] Liu, Min [verfasserIn] Yuan, Mingjian [verfasserIn] Wang, Mei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of Energy Chemistry - Amsterdam [u.a.] : Elsevier, 2013, 60, Seite 272-278 |
---|---|
Übergeordnetes Werk: |
volume:60 ; pages:272-278 |
DOI / URN: |
10.1016/j.jechem.2021.01.005 |
---|
Katalog-ID: |
ELV005878756 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005878756 | ||
003 | DE-627 | ||
005 | 20230524122618.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230504s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jechem.2021.01.005 |2 doi | |
035 | |a (DE-627)ELV005878756 | ||
035 | |a (ELSEVIER)S2095-4956(21)00030-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
100 | 1 | |a Xie, Wangjing |e verfasserin |4 aut | |
245 | 1 | 0 | |a CoS |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the CoS2 nanowires have been successfully activated through constructing Graphdiyne-CoS2 heterojunction nanocomposites. The corresponding electrons transfer energy barriers for these planar unsaturated sulfurs have been significantly diminished, which are induced by the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs. In addition, DFT simulations reveal the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs can promote electron transfer kinetics of the key step, Volmer-Heyrovsky step, of the reaction. As expected, the Graphdiyne-CoS2 heterojunction nanocomposites exhibit superior HER catalytic performance with low overpotential of 97 mV at 10 mA cm−2, and the Tafel slope of 56 mV dec−1. Furthermore, the heterojunction shows outstanding stability as well due to the protection of the Graphdiyne (GDY). The approach thus paves the way for the further efficient transition metal disulfides catalyst manufactures. | ||
650 | 4 | |a Graphdiyne | |
650 | 4 | |a Electrocatalysts | |
650 | 4 | |a Hydrogen evolution reaction | |
650 | 4 | |a DFT simulation | |
650 | 4 | |a 2D carbon material | |
700 | 1 | |a Liu, Kang |e verfasserin |4 aut | |
700 | 1 | |a Shi, Guodong |e verfasserin |4 aut | |
700 | 1 | |a Fu, Xinliang |e verfasserin |4 aut | |
700 | 1 | |a Chen, Xiaojie |e verfasserin |4 aut | |
700 | 1 | |a Fan, Zixiong |e verfasserin |4 aut | |
700 | 1 | |a Liu, Min |e verfasserin |4 aut | |
700 | 1 | |a Yuan, Mingjian |e verfasserin |4 aut | |
700 | 1 | |a Wang, Mei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of Energy Chemistry |d Amsterdam [u.a.] : Elsevier, 2013 |g 60, Seite 272-278 |h Online-Ressource |w (DE-627)745616399 |w (DE-600)2714311-9 |w (DE-576)382032861 |x 2096-885X |7 nnns |
773 | 1 | 8 | |g volume:60 |g pages:272-278 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
951 | |a AR | ||
952 | |d 60 |h 272-278 |
author_variant |
w x wx k l kl g s gs x f xf x c xc z f zf m l ml m y my m w mw |
---|---|
matchkey_str |
article:2096885X:2021----:: |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1016/j.jechem.2021.01.005 doi (DE-627)ELV005878756 (ELSEVIER)S2095-4956(21)00030-9 DE-627 ger DE-627 rda eng 540 DE-600 Xie, Wangjing verfasserin aut CoS 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the CoS2 nanowires have been successfully activated through constructing Graphdiyne-CoS2 heterojunction nanocomposites. The corresponding electrons transfer energy barriers for these planar unsaturated sulfurs have been significantly diminished, which are induced by the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs. In addition, DFT simulations reveal the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs can promote electron transfer kinetics of the key step, Volmer-Heyrovsky step, of the reaction. As expected, the Graphdiyne-CoS2 heterojunction nanocomposites exhibit superior HER catalytic performance with low overpotential of 97 mV at 10 mA cm−2, and the Tafel slope of 56 mV dec−1. Furthermore, the heterojunction shows outstanding stability as well due to the protection of the Graphdiyne (GDY). The approach thus paves the way for the further efficient transition metal disulfides catalyst manufactures. Graphdiyne Electrocatalysts Hydrogen evolution reaction DFT simulation 2D carbon material Liu, Kang verfasserin aut Shi, Guodong verfasserin aut Fu, Xinliang verfasserin aut Chen, Xiaojie verfasserin aut Fan, Zixiong verfasserin aut Liu, Min verfasserin aut Yuan, Mingjian verfasserin aut Wang, Mei verfasserin aut Enthalten in Journal of Energy Chemistry Amsterdam [u.a.] : Elsevier, 2013 60, Seite 272-278 Online-Ressource (DE-627)745616399 (DE-600)2714311-9 (DE-576)382032861 2096-885X nnns volume:60 pages:272-278 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 60 272-278 |
spelling |
10.1016/j.jechem.2021.01.005 doi (DE-627)ELV005878756 (ELSEVIER)S2095-4956(21)00030-9 DE-627 ger DE-627 rda eng 540 DE-600 Xie, Wangjing verfasserin aut CoS 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the CoS2 nanowires have been successfully activated through constructing Graphdiyne-CoS2 heterojunction nanocomposites. The corresponding electrons transfer energy barriers for these planar unsaturated sulfurs have been significantly diminished, which are induced by the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs. In addition, DFT simulations reveal the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs can promote electron transfer kinetics of the key step, Volmer-Heyrovsky step, of the reaction. As expected, the Graphdiyne-CoS2 heterojunction nanocomposites exhibit superior HER catalytic performance with low overpotential of 97 mV at 10 mA cm−2, and the Tafel slope of 56 mV dec−1. Furthermore, the heterojunction shows outstanding stability as well due to the protection of the Graphdiyne (GDY). The approach thus paves the way for the further efficient transition metal disulfides catalyst manufactures. Graphdiyne Electrocatalysts Hydrogen evolution reaction DFT simulation 2D carbon material Liu, Kang verfasserin aut Shi, Guodong verfasserin aut Fu, Xinliang verfasserin aut Chen, Xiaojie verfasserin aut Fan, Zixiong verfasserin aut Liu, Min verfasserin aut Yuan, Mingjian verfasserin aut Wang, Mei verfasserin aut Enthalten in Journal of Energy Chemistry Amsterdam [u.a.] : Elsevier, 2013 60, Seite 272-278 Online-Ressource (DE-627)745616399 (DE-600)2714311-9 (DE-576)382032861 2096-885X nnns volume:60 pages:272-278 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 60 272-278 |
allfields_unstemmed |
10.1016/j.jechem.2021.01.005 doi (DE-627)ELV005878756 (ELSEVIER)S2095-4956(21)00030-9 DE-627 ger DE-627 rda eng 540 DE-600 Xie, Wangjing verfasserin aut CoS 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the CoS2 nanowires have been successfully activated through constructing Graphdiyne-CoS2 heterojunction nanocomposites. The corresponding electrons transfer energy barriers for these planar unsaturated sulfurs have been significantly diminished, which are induced by the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs. In addition, DFT simulations reveal the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs can promote electron transfer kinetics of the key step, Volmer-Heyrovsky step, of the reaction. As expected, the Graphdiyne-CoS2 heterojunction nanocomposites exhibit superior HER catalytic performance with low overpotential of 97 mV at 10 mA cm−2, and the Tafel slope of 56 mV dec−1. Furthermore, the heterojunction shows outstanding stability as well due to the protection of the Graphdiyne (GDY). The approach thus paves the way for the further efficient transition metal disulfides catalyst manufactures. Graphdiyne Electrocatalysts Hydrogen evolution reaction DFT simulation 2D carbon material Liu, Kang verfasserin aut Shi, Guodong verfasserin aut Fu, Xinliang verfasserin aut Chen, Xiaojie verfasserin aut Fan, Zixiong verfasserin aut Liu, Min verfasserin aut Yuan, Mingjian verfasserin aut Wang, Mei verfasserin aut Enthalten in Journal of Energy Chemistry Amsterdam [u.a.] : Elsevier, 2013 60, Seite 272-278 Online-Ressource (DE-627)745616399 (DE-600)2714311-9 (DE-576)382032861 2096-885X nnns volume:60 pages:272-278 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 60 272-278 |
allfieldsGer |
10.1016/j.jechem.2021.01.005 doi (DE-627)ELV005878756 (ELSEVIER)S2095-4956(21)00030-9 DE-627 ger DE-627 rda eng 540 DE-600 Xie, Wangjing verfasserin aut CoS 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the CoS2 nanowires have been successfully activated through constructing Graphdiyne-CoS2 heterojunction nanocomposites. The corresponding electrons transfer energy barriers for these planar unsaturated sulfurs have been significantly diminished, which are induced by the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs. In addition, DFT simulations reveal the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs can promote electron transfer kinetics of the key step, Volmer-Heyrovsky step, of the reaction. As expected, the Graphdiyne-CoS2 heterojunction nanocomposites exhibit superior HER catalytic performance with low overpotential of 97 mV at 10 mA cm−2, and the Tafel slope of 56 mV dec−1. Furthermore, the heterojunction shows outstanding stability as well due to the protection of the Graphdiyne (GDY). The approach thus paves the way for the further efficient transition metal disulfides catalyst manufactures. Graphdiyne Electrocatalysts Hydrogen evolution reaction DFT simulation 2D carbon material Liu, Kang verfasserin aut Shi, Guodong verfasserin aut Fu, Xinliang verfasserin aut Chen, Xiaojie verfasserin aut Fan, Zixiong verfasserin aut Liu, Min verfasserin aut Yuan, Mingjian verfasserin aut Wang, Mei verfasserin aut Enthalten in Journal of Energy Chemistry Amsterdam [u.a.] : Elsevier, 2013 60, Seite 272-278 Online-Ressource (DE-627)745616399 (DE-600)2714311-9 (DE-576)382032861 2096-885X nnns volume:60 pages:272-278 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 60 272-278 |
allfieldsSound |
10.1016/j.jechem.2021.01.005 doi (DE-627)ELV005878756 (ELSEVIER)S2095-4956(21)00030-9 DE-627 ger DE-627 rda eng 540 DE-600 Xie, Wangjing verfasserin aut CoS 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the CoS2 nanowires have been successfully activated through constructing Graphdiyne-CoS2 heterojunction nanocomposites. The corresponding electrons transfer energy barriers for these planar unsaturated sulfurs have been significantly diminished, which are induced by the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs. In addition, DFT simulations reveal the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs can promote electron transfer kinetics of the key step, Volmer-Heyrovsky step, of the reaction. As expected, the Graphdiyne-CoS2 heterojunction nanocomposites exhibit superior HER catalytic performance with low overpotential of 97 mV at 10 mA cm−2, and the Tafel slope of 56 mV dec−1. Furthermore, the heterojunction shows outstanding stability as well due to the protection of the Graphdiyne (GDY). The approach thus paves the way for the further efficient transition metal disulfides catalyst manufactures. Graphdiyne Electrocatalysts Hydrogen evolution reaction DFT simulation 2D carbon material Liu, Kang verfasserin aut Shi, Guodong verfasserin aut Fu, Xinliang verfasserin aut Chen, Xiaojie verfasserin aut Fan, Zixiong verfasserin aut Liu, Min verfasserin aut Yuan, Mingjian verfasserin aut Wang, Mei verfasserin aut Enthalten in Journal of Energy Chemistry Amsterdam [u.a.] : Elsevier, 2013 60, Seite 272-278 Online-Ressource (DE-627)745616399 (DE-600)2714311-9 (DE-576)382032861 2096-885X nnns volume:60 pages:272-278 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 60 272-278 |
language |
English |
source |
Enthalten in Journal of Energy Chemistry 60, Seite 272-278 volume:60 pages:272-278 |
sourceStr |
Enthalten in Journal of Energy Chemistry 60, Seite 272-278 volume:60 pages:272-278 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Graphdiyne Electrocatalysts Hydrogen evolution reaction DFT simulation 2D carbon material |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Journal of Energy Chemistry |
authorswithroles_txt_mv |
Xie, Wangjing @@aut@@ Liu, Kang @@aut@@ Shi, Guodong @@aut@@ Fu, Xinliang @@aut@@ Chen, Xiaojie @@aut@@ Fan, Zixiong @@aut@@ Liu, Min @@aut@@ Yuan, Mingjian @@aut@@ Wang, Mei @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
745616399 |
dewey-sort |
3540 |
id |
ELV005878756 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005878756</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524122618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jechem.2021.01.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005878756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S2095-4956(21)00030-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xie, Wangjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CoS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the CoS2 nanowires have been successfully activated through constructing Graphdiyne-CoS2 heterojunction nanocomposites. The corresponding electrons transfer energy barriers for these planar unsaturated sulfurs have been significantly diminished, which are induced by the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs. In addition, DFT simulations reveal the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs can promote electron transfer kinetics of the key step, Volmer-Heyrovsky step, of the reaction. As expected, the Graphdiyne-CoS2 heterojunction nanocomposites exhibit superior HER catalytic performance with low overpotential of 97 mV at 10 mA cm−2, and the Tafel slope of 56 mV dec−1. Furthermore, the heterojunction shows outstanding stability as well due to the protection of the Graphdiyne (GDY). The approach thus paves the way for the further efficient transition metal disulfides catalyst manufactures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphdiyne</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrocatalysts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen evolution reaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DFT simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2D carbon material</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Guodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Xinliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xiaojie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Zixiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Mingjian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Mei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Energy Chemistry</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2013</subfield><subfield code="g">60, Seite 272-278</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)745616399</subfield><subfield code="w">(DE-600)2714311-9</subfield><subfield code="w">(DE-576)382032861</subfield><subfield code="x">2096-885X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">pages:272-278</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="h">272-278</subfield></datafield></record></collection>
|
author |
Xie, Wangjing |
spellingShingle |
Xie, Wangjing ddc 540 misc Graphdiyne misc Electrocatalysts misc Hydrogen evolution reaction misc DFT simulation misc 2D carbon material CoS |
authorStr |
Xie, Wangjing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)745616399 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2096-885X |
topic_title |
540 DE-600 CoS Graphdiyne Electrocatalysts Hydrogen evolution reaction DFT simulation 2D carbon material |
topic |
ddc 540 misc Graphdiyne misc Electrocatalysts misc Hydrogen evolution reaction misc DFT simulation misc 2D carbon material |
topic_unstemmed |
ddc 540 misc Graphdiyne misc Electrocatalysts misc Hydrogen evolution reaction misc DFT simulation misc 2D carbon material |
topic_browse |
ddc 540 misc Graphdiyne misc Electrocatalysts misc Hydrogen evolution reaction misc DFT simulation misc 2D carbon material |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Energy Chemistry |
hierarchy_parent_id |
745616399 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Journal of Energy Chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)745616399 (DE-600)2714311-9 (DE-576)382032861 |
title |
CoS |
ctrlnum |
(DE-627)ELV005878756 (ELSEVIER)S2095-4956(21)00030-9 |
title_full |
CoS |
author_sort |
Xie, Wangjing |
journal |
Journal of Energy Chemistry |
journalStr |
Journal of Energy Chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
272 |
author_browse |
Xie, Wangjing Liu, Kang Shi, Guodong Fu, Xinliang Chen, Xiaojie Fan, Zixiong Liu, Min Yuan, Mingjian Wang, Mei |
container_volume |
60 |
class |
540 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Xie, Wangjing |
doi_str_mv |
10.1016/j.jechem.2021.01.005 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
cos |
title_auth |
CoS |
abstract |
Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the CoS2 nanowires have been successfully activated through constructing Graphdiyne-CoS2 heterojunction nanocomposites. The corresponding electrons transfer energy barriers for these planar unsaturated sulfurs have been significantly diminished, which are induced by the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs. In addition, DFT simulations reveal the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs can promote electron transfer kinetics of the key step, Volmer-Heyrovsky step, of the reaction. As expected, the Graphdiyne-CoS2 heterojunction nanocomposites exhibit superior HER catalytic performance with low overpotential of 97 mV at 10 mA cm−2, and the Tafel slope of 56 mV dec−1. Furthermore, the heterojunction shows outstanding stability as well due to the protection of the Graphdiyne (GDY). The approach thus paves the way for the further efficient transition metal disulfides catalyst manufactures. |
abstractGer |
Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the CoS2 nanowires have been successfully activated through constructing Graphdiyne-CoS2 heterojunction nanocomposites. The corresponding electrons transfer energy barriers for these planar unsaturated sulfurs have been significantly diminished, which are induced by the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs. In addition, DFT simulations reveal the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs can promote electron transfer kinetics of the key step, Volmer-Heyrovsky step, of the reaction. As expected, the Graphdiyne-CoS2 heterojunction nanocomposites exhibit superior HER catalytic performance with low overpotential of 97 mV at 10 mA cm−2, and the Tafel slope of 56 mV dec−1. Furthermore, the heterojunction shows outstanding stability as well due to the protection of the Graphdiyne (GDY). The approach thus paves the way for the further efficient transition metal disulfides catalyst manufactures. |
abstract_unstemmed |
Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the CoS2 nanowires have been successfully activated through constructing Graphdiyne-CoS2 heterojunction nanocomposites. The corresponding electrons transfer energy barriers for these planar unsaturated sulfurs have been significantly diminished, which are induced by the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs. In addition, DFT simulations reveal the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs can promote electron transfer kinetics of the key step, Volmer-Heyrovsky step, of the reaction. As expected, the Graphdiyne-CoS2 heterojunction nanocomposites exhibit superior HER catalytic performance with low overpotential of 97 mV at 10 mA cm−2, and the Tafel slope of 56 mV dec−1. Furthermore, the heterojunction shows outstanding stability as well due to the protection of the Graphdiyne (GDY). The approach thus paves the way for the further efficient transition metal disulfides catalyst manufactures. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
CoS |
remote_bool |
true |
author2 |
Liu, Kang Shi, Guodong Fu, Xinliang Chen, Xiaojie Fan, Zixiong Liu, Min Yuan, Mingjian Wang, Mei |
author2Str |
Liu, Kang Shi, Guodong Fu, Xinliang Chen, Xiaojie Fan, Zixiong Liu, Min Yuan, Mingjian Wang, Mei |
ppnlink |
745616399 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jechem.2021.01.005 |
up_date |
2024-07-06T19:28:29.641Z |
_version_ |
1803859116313018368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005878756</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524122618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230504s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jechem.2021.01.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005878756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S2095-4956(21)00030-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xie, Wangjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CoS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Transition metal sulfides are an important category for hydrogen evolution reaction (HER). However, only few edge unsaturated sulfurs functionalize as catalytic sites, which has dramatically limited the catalytic activity and stability. In this work, planar unsaturated sulfurs in (211) plane of the CoS2 nanowires have been successfully activated through constructing Graphdiyne-CoS2 heterojunction nanocomposites. The corresponding electrons transfer energy barriers for these planar unsaturated sulfurs have been significantly diminished, which are induced by the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs. In addition, DFT simulations reveal the synergetic effects of the sp 1 hybridized carbons and unsaturated planar sulfurs can promote electron transfer kinetics of the key step, Volmer-Heyrovsky step, of the reaction. As expected, the Graphdiyne-CoS2 heterojunction nanocomposites exhibit superior HER catalytic performance with low overpotential of 97 mV at 10 mA cm−2, and the Tafel slope of 56 mV dec−1. Furthermore, the heterojunction shows outstanding stability as well due to the protection of the Graphdiyne (GDY). The approach thus paves the way for the further efficient transition metal disulfides catalyst manufactures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphdiyne</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrocatalysts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen evolution reaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DFT simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2D carbon material</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Guodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Xinliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xiaojie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Zixiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Mingjian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Mei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Energy Chemistry</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2013</subfield><subfield code="g">60, Seite 272-278</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)745616399</subfield><subfield code="w">(DE-600)2714311-9</subfield><subfield code="w">(DE-576)382032861</subfield><subfield code="x">2096-885X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">pages:272-278</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="h">272-278</subfield></datafield></record></collection>
|
score |
7.4010687 |