Improving the activity and stability of
Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducin...
Ausführliche Beschreibung
Autor*in: |
Li, Jialin [verfasserIn] Jiang, Luying [verfasserIn] Cao, Xue [verfasserIn] Wu, Yifan [verfasserIn] Lu, Fuping [verfasserIn] Liu, Fufeng [verfasserIn] Li, Yu [verfasserIn] Liu, Yihan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Enzyme and microbial technology - Amsterdam [u.a.] : Elsevier Science, 1979, 147 |
---|---|
Übergeordnetes Werk: |
volume:147 |
DOI / URN: |
10.1016/j.enzmictec.2021.109787 |
---|
Katalog-ID: |
ELV005990858 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005990858 | ||
003 | DE-627 | ||
005 | 20230524145452.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.enzmictec.2021.109787 |2 doi | |
035 | |a (DE-627)ELV005990858 | ||
035 | |a (ELSEVIER)S0141-0229(21)00045-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q DE-600 |
084 | |a 42.30 |2 bkl | ||
084 | |a 58.30 |2 bkl | ||
100 | 1 | |a Li, Jialin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improving the activity and stability of |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering. | ||
650 | 4 | |a Alkaline protease | |
650 | 4 | |a Specific activity | |
650 | 4 | |a Thermostability | |
650 | 4 | |a Alkaline stability | |
650 | 4 | |a Molecular dynamics simulation | |
700 | 1 | |a Jiang, Luying |e verfasserin |4 aut | |
700 | 1 | |a Cao, Xue |e verfasserin |4 aut | |
700 | 1 | |a Wu, Yifan |e verfasserin |4 aut | |
700 | 1 | |a Lu, Fuping |e verfasserin |4 aut | |
700 | 1 | |a Liu, Fufeng |e verfasserin |4 aut | |
700 | 1 | |a Li, Yu |e verfasserin |4 aut | |
700 | 1 | |a Liu, Yihan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Enzyme and microbial technology |d Amsterdam [u.a.] : Elsevier Science, 1979 |g 147 |h Online-Ressource |w (DE-627)306582031 |w (DE-600)1497704-7 |w (DE-576)094139687 |x 1879-0909 |7 nnns |
773 | 1 | 8 | |g volume:147 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 42.30 |j Mikrobiologie |
936 | b | k | |a 58.30 |j Biotechnologie |
951 | |a AR | ||
952 | |d 147 |
author_variant |
j l jl l j lj x c xc y w yw f l fl f l fl y l yl y l yl |
---|---|
matchkey_str |
article:18790909:2021----::mrvnteciiyns |
hierarchy_sort_str |
2021 |
bklnumber |
42.30 58.30 |
publishDate |
2021 |
allfields |
10.1016/j.enzmictec.2021.109787 doi (DE-627)ELV005990858 (ELSEVIER)S0141-0229(21)00045-4 DE-627 ger DE-627 rda eng 610 DE-600 42.30 bkl 58.30 bkl Li, Jialin verfasserin aut Improving the activity and stability of 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering. Alkaline protease Specific activity Thermostability Alkaline stability Molecular dynamics simulation Jiang, Luying verfasserin aut Cao, Xue verfasserin aut Wu, Yifan verfasserin aut Lu, Fuping verfasserin aut Liu, Fufeng verfasserin aut Li, Yu verfasserin aut Liu, Yihan verfasserin aut Enthalten in Enzyme and microbial technology Amsterdam [u.a.] : Elsevier Science, 1979 147 Online-Ressource (DE-627)306582031 (DE-600)1497704-7 (DE-576)094139687 1879-0909 nnns volume:147 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.30 Mikrobiologie 58.30 Biotechnologie AR 147 |
spelling |
10.1016/j.enzmictec.2021.109787 doi (DE-627)ELV005990858 (ELSEVIER)S0141-0229(21)00045-4 DE-627 ger DE-627 rda eng 610 DE-600 42.30 bkl 58.30 bkl Li, Jialin verfasserin aut Improving the activity and stability of 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering. Alkaline protease Specific activity Thermostability Alkaline stability Molecular dynamics simulation Jiang, Luying verfasserin aut Cao, Xue verfasserin aut Wu, Yifan verfasserin aut Lu, Fuping verfasserin aut Liu, Fufeng verfasserin aut Li, Yu verfasserin aut Liu, Yihan verfasserin aut Enthalten in Enzyme and microbial technology Amsterdam [u.a.] : Elsevier Science, 1979 147 Online-Ressource (DE-627)306582031 (DE-600)1497704-7 (DE-576)094139687 1879-0909 nnns volume:147 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.30 Mikrobiologie 58.30 Biotechnologie AR 147 |
allfields_unstemmed |
10.1016/j.enzmictec.2021.109787 doi (DE-627)ELV005990858 (ELSEVIER)S0141-0229(21)00045-4 DE-627 ger DE-627 rda eng 610 DE-600 42.30 bkl 58.30 bkl Li, Jialin verfasserin aut Improving the activity and stability of 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering. Alkaline protease Specific activity Thermostability Alkaline stability Molecular dynamics simulation Jiang, Luying verfasserin aut Cao, Xue verfasserin aut Wu, Yifan verfasserin aut Lu, Fuping verfasserin aut Liu, Fufeng verfasserin aut Li, Yu verfasserin aut Liu, Yihan verfasserin aut Enthalten in Enzyme and microbial technology Amsterdam [u.a.] : Elsevier Science, 1979 147 Online-Ressource (DE-627)306582031 (DE-600)1497704-7 (DE-576)094139687 1879-0909 nnns volume:147 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.30 Mikrobiologie 58.30 Biotechnologie AR 147 |
allfieldsGer |
10.1016/j.enzmictec.2021.109787 doi (DE-627)ELV005990858 (ELSEVIER)S0141-0229(21)00045-4 DE-627 ger DE-627 rda eng 610 DE-600 42.30 bkl 58.30 bkl Li, Jialin verfasserin aut Improving the activity and stability of 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering. Alkaline protease Specific activity Thermostability Alkaline stability Molecular dynamics simulation Jiang, Luying verfasserin aut Cao, Xue verfasserin aut Wu, Yifan verfasserin aut Lu, Fuping verfasserin aut Liu, Fufeng verfasserin aut Li, Yu verfasserin aut Liu, Yihan verfasserin aut Enthalten in Enzyme and microbial technology Amsterdam [u.a.] : Elsevier Science, 1979 147 Online-Ressource (DE-627)306582031 (DE-600)1497704-7 (DE-576)094139687 1879-0909 nnns volume:147 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.30 Mikrobiologie 58.30 Biotechnologie AR 147 |
allfieldsSound |
10.1016/j.enzmictec.2021.109787 doi (DE-627)ELV005990858 (ELSEVIER)S0141-0229(21)00045-4 DE-627 ger DE-627 rda eng 610 DE-600 42.30 bkl 58.30 bkl Li, Jialin verfasserin aut Improving the activity and stability of 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering. Alkaline protease Specific activity Thermostability Alkaline stability Molecular dynamics simulation Jiang, Luying verfasserin aut Cao, Xue verfasserin aut Wu, Yifan verfasserin aut Lu, Fuping verfasserin aut Liu, Fufeng verfasserin aut Li, Yu verfasserin aut Liu, Yihan verfasserin aut Enthalten in Enzyme and microbial technology Amsterdam [u.a.] : Elsevier Science, 1979 147 Online-Ressource (DE-627)306582031 (DE-600)1497704-7 (DE-576)094139687 1879-0909 nnns volume:147 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.30 Mikrobiologie 58.30 Biotechnologie AR 147 |
language |
English |
source |
Enthalten in Enzyme and microbial technology 147 volume:147 |
sourceStr |
Enthalten in Enzyme and microbial technology 147 volume:147 |
format_phy_str_mv |
Article |
bklname |
Mikrobiologie Biotechnologie |
institution |
findex.gbv.de |
topic_facet |
Alkaline protease Specific activity Thermostability Alkaline stability Molecular dynamics simulation |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Enzyme and microbial technology |
authorswithroles_txt_mv |
Li, Jialin @@aut@@ Jiang, Luying @@aut@@ Cao, Xue @@aut@@ Wu, Yifan @@aut@@ Lu, Fuping @@aut@@ Liu, Fufeng @@aut@@ Li, Yu @@aut@@ Liu, Yihan @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
306582031 |
dewey-sort |
3610 |
id |
ELV005990858 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005990858</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145452.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enzmictec.2021.109787</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005990858</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-0229(21)00045-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Jialin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving the activity and stability of</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkaline protease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Specific activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermostability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkaline stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Luying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yifan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Fuping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Fufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yihan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Enzyme and microbial technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">147</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306582031</subfield><subfield code="w">(DE-600)1497704-7</subfield><subfield code="w">(DE-576)094139687</subfield><subfield code="x">1879-0909</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.30</subfield><subfield code="j">Mikrobiologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="j">Biotechnologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield></datafield></record></collection>
|
author |
Li, Jialin |
spellingShingle |
Li, Jialin ddc 610 bkl 42.30 bkl 58.30 misc Alkaline protease misc Specific activity misc Thermostability misc Alkaline stability misc Molecular dynamics simulation Improving the activity and stability of |
authorStr |
Li, Jialin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306582031 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0909 |
topic_title |
610 DE-600 42.30 bkl 58.30 bkl Improving the activity and stability of Alkaline protease Specific activity Thermostability Alkaline stability Molecular dynamics simulation |
topic |
ddc 610 bkl 42.30 bkl 58.30 misc Alkaline protease misc Specific activity misc Thermostability misc Alkaline stability misc Molecular dynamics simulation |
topic_unstemmed |
ddc 610 bkl 42.30 bkl 58.30 misc Alkaline protease misc Specific activity misc Thermostability misc Alkaline stability misc Molecular dynamics simulation |
topic_browse |
ddc 610 bkl 42.30 bkl 58.30 misc Alkaline protease misc Specific activity misc Thermostability misc Alkaline stability misc Molecular dynamics simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Enzyme and microbial technology |
hierarchy_parent_id |
306582031 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Enzyme and microbial technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306582031 (DE-600)1497704-7 (DE-576)094139687 |
title |
Improving the activity and stability of |
ctrlnum |
(DE-627)ELV005990858 (ELSEVIER)S0141-0229(21)00045-4 |
title_full |
Improving the activity and stability of |
author_sort |
Li, Jialin |
journal |
Enzyme and microbial technology |
journalStr |
Enzyme and microbial technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Li, Jialin Jiang, Luying Cao, Xue Wu, Yifan Lu, Fuping Liu, Fufeng Li, Yu Liu, Yihan |
container_volume |
147 |
class |
610 DE-600 42.30 bkl 58.30 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Jialin |
doi_str_mv |
10.1016/j.enzmictec.2021.109787 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
improving the activity and stability of |
title_auth |
Improving the activity and stability of |
abstract |
Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering. |
abstractGer |
Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering. |
abstract_unstemmed |
Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Improving the activity and stability of |
remote_bool |
true |
author2 |
Jiang, Luying Cao, Xue Wu, Yifan Lu, Fuping Liu, Fufeng Li, Yu Liu, Yihan |
author2Str |
Jiang, Luying Cao, Xue Wu, Yifan Lu, Fuping Liu, Fufeng Li, Yu Liu, Yihan |
ppnlink |
306582031 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.enzmictec.2021.109787 |
up_date |
2024-07-06T19:50:58.489Z |
_version_ |
1803860530682658816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005990858</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145452.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enzmictec.2021.109787</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005990858</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-0229(21)00045-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Jialin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving the activity and stability of</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Detergent enzymes have been developed extensively as eco-friendly substitutes for the harmful chemicals in detergent. Among them, alkaline protease accounts for a large share of detergent enzyme sales. Thus, improving the specific activity of alkaline protease could play an important role in reducing the cost of detergent enzymes. In our study, alkaline protease from Bacillus clausii (PRO) was used to construct a mutant library through directed evolution using error-prone PCR, and a variant (G95P) with 9-fold enhancement in specific activity was obtained. After incubation at a pH of 11.0 for 70 h, G95P maintained 67 % of its maximal activity, which was 46 % more than wild-type PRO (WT), indicating that G95P has better alkaline stability than WT. The thermostability of G95P was also enhanced, as G95P achieved 17 % initial activity after incubation for 50 h at 60 °C, while WT lost its activity. The MD simulation results verified that variant G95P possessed improved stability of its Gly95-Gly100 loop region and Arg19-Asp265 salt bridge, leading to enhanced stability and catalytic efficiency. This work enhances the understanding of the structure-function relationship of PRO and provides an academic foundation for improving the enzymatic properties of PRO to satisfy industrial requirements using protein engineering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkaline protease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Specific activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermostability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkaline stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Luying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yifan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Fuping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Fufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yihan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Enzyme and microbial technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">147</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306582031</subfield><subfield code="w">(DE-600)1497704-7</subfield><subfield code="w">(DE-576)094139687</subfield><subfield code="x">1879-0909</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.30</subfield><subfield code="j">Mikrobiologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="j">Biotechnologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield></datafield></record></collection>
|
score |
7.398164 |