Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses
The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be...
Ausführliche Beschreibung
Autor*in: |
Oh, Tae-suk [verfasserIn] Kim, Yonghee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of nuclear energy - Amsterdam [u.a.] : Elsevier Science, 1975, 158 |
---|---|
Übergeordnetes Werk: |
volume:158 |
DOI / URN: |
10.1016/j.anucene.2021.108271 |
---|
Katalog-ID: |
ELV005992168 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV005992168 | ||
003 | DE-627 | ||
005 | 20230524133413.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.anucene.2021.108271 |2 doi | |
035 | |a (DE-627)ELV005992168 | ||
035 | |a (ELSEVIER)S0306-4549(21)00147-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 33.00 |2 bkl | ||
084 | |a 52.55 |2 bkl | ||
100 | 1 | |a Oh, Tae-suk |e verfasserin |4 aut | |
245 | 1 | 0 | |a Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be static while deducing the variation of the amplitude. In this paper, the formulation of standard IQM and PCQM methods based on a multi-group neutron diffusion equation is presented along with a description for implementing such methods to feedback-encompassed nonlinear transient calculation. The idea of relaxation in the quasi-static treatment of the shape through polynomial interpolation is proposed, and comparison among the ramifications of having different conjectures, e.g., static, linear, and quadratic relaxation, has been made based on a thermal-hydraulics-coupled one-dimensional two-group reactor representing the pressurized water reactor. It is found that performance of both IQM and PCQM could be clearly improved with polynomial relaxations even for strongly non-linear reactor problems. | ||
650 | 4 | |a Quasi-static method | |
650 | 4 | |a Reactor kinetics | |
650 | 4 | |a IQM | |
650 | 4 | |a PCQM | |
650 | 4 | |a Polynomial relaxation | |
650 | 4 | |a Thermal-hydraulics feedback | |
700 | 1 | |a Kim, Yonghee |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of nuclear energy |d Amsterdam [u.a.] : Elsevier Science, 1975 |g 158 |h Online-Ressource |w (DE-627)320406679 |w (DE-600)2000768-1 |w (DE-576)120883511 |x 0306-4549 |7 nnns |
773 | 1 | 8 | |g volume:158 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.00 |j Physik: Allgemeines |
936 | b | k | |a 52.55 |j Kerntechnik |j Reaktortechnik |
951 | |a AR | ||
952 | |d 158 |
author_variant |
t s o tso y k yk |
---|---|
matchkey_str |
article:03064549:2021----::oyoileaainnhqaittcprahnismlmnainnoln |
hierarchy_sort_str |
2021 |
bklnumber |
33.00 52.55 |
publishDate |
2021 |
allfields |
10.1016/j.anucene.2021.108271 doi (DE-627)ELV005992168 (ELSEVIER)S0306-4549(21)00147-X DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl 52.55 bkl Oh, Tae-suk verfasserin aut Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be static while deducing the variation of the amplitude. In this paper, the formulation of standard IQM and PCQM methods based on a multi-group neutron diffusion equation is presented along with a description for implementing such methods to feedback-encompassed nonlinear transient calculation. The idea of relaxation in the quasi-static treatment of the shape through polynomial interpolation is proposed, and comparison among the ramifications of having different conjectures, e.g., static, linear, and quadratic relaxation, has been made based on a thermal-hydraulics-coupled one-dimensional two-group reactor representing the pressurized water reactor. It is found that performance of both IQM and PCQM could be clearly improved with polynomial relaxations even for strongly non-linear reactor problems. Quasi-static method Reactor kinetics IQM PCQM Polynomial relaxation Thermal-hydraulics feedback Kim, Yonghee verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 158 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:158 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines 52.55 Kerntechnik Reaktortechnik AR 158 |
spelling |
10.1016/j.anucene.2021.108271 doi (DE-627)ELV005992168 (ELSEVIER)S0306-4549(21)00147-X DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl 52.55 bkl Oh, Tae-suk verfasserin aut Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be static while deducing the variation of the amplitude. In this paper, the formulation of standard IQM and PCQM methods based on a multi-group neutron diffusion equation is presented along with a description for implementing such methods to feedback-encompassed nonlinear transient calculation. The idea of relaxation in the quasi-static treatment of the shape through polynomial interpolation is proposed, and comparison among the ramifications of having different conjectures, e.g., static, linear, and quadratic relaxation, has been made based on a thermal-hydraulics-coupled one-dimensional two-group reactor representing the pressurized water reactor. It is found that performance of both IQM and PCQM could be clearly improved with polynomial relaxations even for strongly non-linear reactor problems. Quasi-static method Reactor kinetics IQM PCQM Polynomial relaxation Thermal-hydraulics feedback Kim, Yonghee verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 158 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:158 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines 52.55 Kerntechnik Reaktortechnik AR 158 |
allfields_unstemmed |
10.1016/j.anucene.2021.108271 doi (DE-627)ELV005992168 (ELSEVIER)S0306-4549(21)00147-X DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl 52.55 bkl Oh, Tae-suk verfasserin aut Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be static while deducing the variation of the amplitude. In this paper, the formulation of standard IQM and PCQM methods based on a multi-group neutron diffusion equation is presented along with a description for implementing such methods to feedback-encompassed nonlinear transient calculation. The idea of relaxation in the quasi-static treatment of the shape through polynomial interpolation is proposed, and comparison among the ramifications of having different conjectures, e.g., static, linear, and quadratic relaxation, has been made based on a thermal-hydraulics-coupled one-dimensional two-group reactor representing the pressurized water reactor. It is found that performance of both IQM and PCQM could be clearly improved with polynomial relaxations even for strongly non-linear reactor problems. Quasi-static method Reactor kinetics IQM PCQM Polynomial relaxation Thermal-hydraulics feedback Kim, Yonghee verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 158 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:158 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines 52.55 Kerntechnik Reaktortechnik AR 158 |
allfieldsGer |
10.1016/j.anucene.2021.108271 doi (DE-627)ELV005992168 (ELSEVIER)S0306-4549(21)00147-X DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl 52.55 bkl Oh, Tae-suk verfasserin aut Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be static while deducing the variation of the amplitude. In this paper, the formulation of standard IQM and PCQM methods based on a multi-group neutron diffusion equation is presented along with a description for implementing such methods to feedback-encompassed nonlinear transient calculation. The idea of relaxation in the quasi-static treatment of the shape through polynomial interpolation is proposed, and comparison among the ramifications of having different conjectures, e.g., static, linear, and quadratic relaxation, has been made based on a thermal-hydraulics-coupled one-dimensional two-group reactor representing the pressurized water reactor. It is found that performance of both IQM and PCQM could be clearly improved with polynomial relaxations even for strongly non-linear reactor problems. Quasi-static method Reactor kinetics IQM PCQM Polynomial relaxation Thermal-hydraulics feedback Kim, Yonghee verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 158 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:158 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines 52.55 Kerntechnik Reaktortechnik AR 158 |
allfieldsSound |
10.1016/j.anucene.2021.108271 doi (DE-627)ELV005992168 (ELSEVIER)S0306-4549(21)00147-X DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl 52.55 bkl Oh, Tae-suk verfasserin aut Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be static while deducing the variation of the amplitude. In this paper, the formulation of standard IQM and PCQM methods based on a multi-group neutron diffusion equation is presented along with a description for implementing such methods to feedback-encompassed nonlinear transient calculation. The idea of relaxation in the quasi-static treatment of the shape through polynomial interpolation is proposed, and comparison among the ramifications of having different conjectures, e.g., static, linear, and quadratic relaxation, has been made based on a thermal-hydraulics-coupled one-dimensional two-group reactor representing the pressurized water reactor. It is found that performance of both IQM and PCQM could be clearly improved with polynomial relaxations even for strongly non-linear reactor problems. Quasi-static method Reactor kinetics IQM PCQM Polynomial relaxation Thermal-hydraulics feedback Kim, Yonghee verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 158 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:158 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines 52.55 Kerntechnik Reaktortechnik AR 158 |
language |
English |
source |
Enthalten in Annals of nuclear energy 158 volume:158 |
sourceStr |
Enthalten in Annals of nuclear energy 158 volume:158 |
format_phy_str_mv |
Article |
bklname |
Physik: Allgemeines Kerntechnik Reaktortechnik |
institution |
findex.gbv.de |
topic_facet |
Quasi-static method Reactor kinetics IQM PCQM Polynomial relaxation Thermal-hydraulics feedback |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Annals of nuclear energy |
authorswithroles_txt_mv |
Oh, Tae-suk @@aut@@ Kim, Yonghee @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320406679 |
dewey-sort |
3530 |
id |
ELV005992168 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005992168</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524133413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.anucene.2021.108271</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005992168</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-4549(21)00147-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oh, Tae-suk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be static while deducing the variation of the amplitude. In this paper, the formulation of standard IQM and PCQM methods based on a multi-group neutron diffusion equation is presented along with a description for implementing such methods to feedback-encompassed nonlinear transient calculation. The idea of relaxation in the quasi-static treatment of the shape through polynomial interpolation is proposed, and comparison among the ramifications of having different conjectures, e.g., static, linear, and quadratic relaxation, has been made based on a thermal-hydraulics-coupled one-dimensional two-group reactor representing the pressurized water reactor. It is found that performance of both IQM and PCQM could be clearly improved with polynomial relaxations even for strongly non-linear reactor problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasi-static method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactor kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IQM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PCQM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial relaxation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal-hydraulics feedback</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Yonghee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of nuclear energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">158</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406679</subfield><subfield code="w">(DE-600)2000768-1</subfield><subfield code="w">(DE-576)120883511</subfield><subfield code="x">0306-4549</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:158</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">158</subfield></datafield></record></collection>
|
author |
Oh, Tae-suk |
spellingShingle |
Oh, Tae-suk ddc 530 bkl 33.00 bkl 52.55 misc Quasi-static method misc Reactor kinetics misc IQM misc PCQM misc Polynomial relaxation misc Thermal-hydraulics feedback Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses |
authorStr |
Oh, Tae-suk |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320406679 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0306-4549 |
topic_title |
530 DE-600 33.00 bkl 52.55 bkl Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses Quasi-static method Reactor kinetics IQM PCQM Polynomial relaxation Thermal-hydraulics feedback |
topic |
ddc 530 bkl 33.00 bkl 52.55 misc Quasi-static method misc Reactor kinetics misc IQM misc PCQM misc Polynomial relaxation misc Thermal-hydraulics feedback |
topic_unstemmed |
ddc 530 bkl 33.00 bkl 52.55 misc Quasi-static method misc Reactor kinetics misc IQM misc PCQM misc Polynomial relaxation misc Thermal-hydraulics feedback |
topic_browse |
ddc 530 bkl 33.00 bkl 52.55 misc Quasi-static method misc Reactor kinetics misc IQM misc PCQM misc Polynomial relaxation misc Thermal-hydraulics feedback |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Annals of nuclear energy |
hierarchy_parent_id |
320406679 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Annals of nuclear energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 |
title |
Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses |
ctrlnum |
(DE-627)ELV005992168 (ELSEVIER)S0306-4549(21)00147-X |
title_full |
Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses |
author_sort |
Oh, Tae-suk |
journal |
Annals of nuclear energy |
journalStr |
Annals of nuclear energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Oh, Tae-suk Kim, Yonghee |
container_volume |
158 |
class |
530 DE-600 33.00 bkl 52.55 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Oh, Tae-suk |
doi_str_mv |
10.1016/j.anucene.2021.108271 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses |
title_auth |
Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses |
abstract |
The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be static while deducing the variation of the amplitude. In this paper, the formulation of standard IQM and PCQM methods based on a multi-group neutron diffusion equation is presented along with a description for implementing such methods to feedback-encompassed nonlinear transient calculation. The idea of relaxation in the quasi-static treatment of the shape through polynomial interpolation is proposed, and comparison among the ramifications of having different conjectures, e.g., static, linear, and quadratic relaxation, has been made based on a thermal-hydraulics-coupled one-dimensional two-group reactor representing the pressurized water reactor. It is found that performance of both IQM and PCQM could be clearly improved with polynomial relaxations even for strongly non-linear reactor problems. |
abstractGer |
The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be static while deducing the variation of the amplitude. In this paper, the formulation of standard IQM and PCQM methods based on a multi-group neutron diffusion equation is presented along with a description for implementing such methods to feedback-encompassed nonlinear transient calculation. The idea of relaxation in the quasi-static treatment of the shape through polynomial interpolation is proposed, and comparison among the ramifications of having different conjectures, e.g., static, linear, and quadratic relaxation, has been made based on a thermal-hydraulics-coupled one-dimensional two-group reactor representing the pressurized water reactor. It is found that performance of both IQM and PCQM could be clearly improved with polynomial relaxations even for strongly non-linear reactor problems. |
abstract_unstemmed |
The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be static while deducing the variation of the amplitude. In this paper, the formulation of standard IQM and PCQM methods based on a multi-group neutron diffusion equation is presented along with a description for implementing such methods to feedback-encompassed nonlinear transient calculation. The idea of relaxation in the quasi-static treatment of the shape through polynomial interpolation is proposed, and comparison among the ramifications of having different conjectures, e.g., static, linear, and quadratic relaxation, has been made based on a thermal-hydraulics-coupled one-dimensional two-group reactor representing the pressurized water reactor. It is found that performance of both IQM and PCQM could be clearly improved with polynomial relaxations even for strongly non-linear reactor problems. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses |
remote_bool |
true |
author2 |
Kim, Yonghee |
author2Str |
Kim, Yonghee |
ppnlink |
320406679 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.anucene.2021.108271 |
up_date |
2024-07-06T19:51:14.131Z |
_version_ |
1803860547083436032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV005992168</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524133413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.anucene.2021.108271</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV005992168</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-4549(21)00147-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oh, Tae-suk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polynomial relaxation in the quasi-static approach and its implementation in nonlinear reactor transient analyses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The quasi-static (QS) method had been devised for efficient analyses of reactor transients, and two different approaches are widely implemented, which are namely Improved Quasi-Static Method (IQM) and Predictor-Corrector Quasi-Static Method (PCQM). Conventionally, both methods regard the shape to be static while deducing the variation of the amplitude. In this paper, the formulation of standard IQM and PCQM methods based on a multi-group neutron diffusion equation is presented along with a description for implementing such methods to feedback-encompassed nonlinear transient calculation. The idea of relaxation in the quasi-static treatment of the shape through polynomial interpolation is proposed, and comparison among the ramifications of having different conjectures, e.g., static, linear, and quadratic relaxation, has been made based on a thermal-hydraulics-coupled one-dimensional two-group reactor representing the pressurized water reactor. It is found that performance of both IQM and PCQM could be clearly improved with polynomial relaxations even for strongly non-linear reactor problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasi-static method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactor kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IQM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PCQM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial relaxation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal-hydraulics feedback</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Yonghee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of nuclear energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">158</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406679</subfield><subfield code="w">(DE-600)2000768-1</subfield><subfield code="w">(DE-576)120883511</subfield><subfield code="x">0306-4549</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:158</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">158</subfield></datafield></record></collection>
|
score |
7.4013615 |