Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces
The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provi...
Ausführliche Beschreibung
Autor*in: |
Everman, Brad [verfasserIn] Rajendran, Narmadha [verfasserIn] Li, Xiaomin [verfasserIn] Zong, Ziliang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Sustainable Computing - Amsterdam [u.a.] : Elsevier, 2011, 30 |
---|---|
Übergeordnetes Werk: |
volume:30 |
DOI / URN: |
10.1016/j.suscom.2021.100528 |
---|
Katalog-ID: |
ELV006060390 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006060390 | ||
003 | DE-627 | ||
005 | 20231205154456.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.suscom.2021.100528 |2 doi | |
035 | |a (DE-627)ELV006060390 | ||
035 | |a (ELSEVIER)S2210-5379(21)00021-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
100 | 1 | |a Everman, Brad |e verfasserin |0 (orcid)0000-0002-2787-9874 |4 aut | |
245 | 1 | 0 | |a Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provide new or significantly improve existing cloud services that can better support hybrid workloads (e.g. online purchase jobs and batch jobs that support ranking or recommendation systems). Successful cloud systems need to efficiently handle and quickly respond to huge volume of traffic with such hybrid workloads. Meanwhile, it is critical to reduce the total cost of ownership (TCO) for profitability. Improving system utilization is one of the effective techniques to achieve the twin goals of high performance and low TCO. This paper conducts a comprehensive analysis on the 2017 and 2018 cluster traces released by Alibaba, which provides a case study about Alibaba's best practices in improving the performance and cost efficiency of its large-scale cloud systems by consolidating time-sensitive online service jobs with time-insensitive batch jobs. Our investigation indicates that the over-subscription (causing resource waste and low utilization) and under-subscription (causing performance degradation) problems co-exist in the current Alibaba system. We develop a simulator that allows us to evaluate possible solutions to address this problem and their impact on the performance, energy consumption, and TCO. Our experiments show that the estimated TCO can be reduced by $600,000 for the 2018 trace running on over 4,000 machines without compromising performance. The TCO can decrease by nearly $68 million if similar strategy is extrapolated to Alibaba's 432,000 web facing servers. | ||
650 | 4 | |a Data center efficiency | |
650 | 4 | |a Server utilization | |
650 | 4 | |a Workload scheduling | |
650 | 4 | |a Big data analysis | |
650 | 4 | |a Alibaba cluster trace | |
700 | 1 | |a Rajendran, Narmadha |e verfasserin |4 aut | |
700 | 1 | |a Li, Xiaomin |e verfasserin |4 aut | |
700 | 1 | |a Zong, Ziliang |e verfasserin |0 (orcid)0000-0003-2693-7419 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Sustainable Computing |d Amsterdam [u.a.] : Elsevier, 2011 |g 30 |h Online-Ressource |w (DE-627)647657384 |w (DE-600)2596254-1 |w (DE-576)338519165 |x 2210-5379 |7 nnns |
773 | 1 | 8 | |g volume:30 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
951 | |a AR | ||
952 | |d 30 |
author_variant |
b e be n r nr x l xl z z zz |
---|---|
matchkey_str |
article:22105379:2021----::mrvnteotfiinyfagsaelussesunnhbiwrlascss |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1016/j.suscom.2021.100528 doi (DE-627)ELV006060390 (ELSEVIER)S2210-5379(21)00021-4 DE-627 ger DE-627 rda eng 004 DE-600 Everman, Brad verfasserin (orcid)0000-0002-2787-9874 aut Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provide new or significantly improve existing cloud services that can better support hybrid workloads (e.g. online purchase jobs and batch jobs that support ranking or recommendation systems). Successful cloud systems need to efficiently handle and quickly respond to huge volume of traffic with such hybrid workloads. Meanwhile, it is critical to reduce the total cost of ownership (TCO) for profitability. Improving system utilization is one of the effective techniques to achieve the twin goals of high performance and low TCO. This paper conducts a comprehensive analysis on the 2017 and 2018 cluster traces released by Alibaba, which provides a case study about Alibaba's best practices in improving the performance and cost efficiency of its large-scale cloud systems by consolidating time-sensitive online service jobs with time-insensitive batch jobs. Our investigation indicates that the over-subscription (causing resource waste and low utilization) and under-subscription (causing performance degradation) problems co-exist in the current Alibaba system. We develop a simulator that allows us to evaluate possible solutions to address this problem and their impact on the performance, energy consumption, and TCO. Our experiments show that the estimated TCO can be reduced by $600,000 for the 2018 trace running on over 4,000 machines without compromising performance. The TCO can decrease by nearly $68 million if similar strategy is extrapolated to Alibaba's 432,000 web facing servers. Data center efficiency Server utilization Workload scheduling Big data analysis Alibaba cluster trace Rajendran, Narmadha verfasserin aut Li, Xiaomin verfasserin aut Zong, Ziliang verfasserin (orcid)0000-0003-2693-7419 aut Enthalten in Sustainable Computing Amsterdam [u.a.] : Elsevier, 2011 30 Online-Ressource (DE-627)647657384 (DE-600)2596254-1 (DE-576)338519165 2210-5379 nnns volume:30 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 30 |
spelling |
10.1016/j.suscom.2021.100528 doi (DE-627)ELV006060390 (ELSEVIER)S2210-5379(21)00021-4 DE-627 ger DE-627 rda eng 004 DE-600 Everman, Brad verfasserin (orcid)0000-0002-2787-9874 aut Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provide new or significantly improve existing cloud services that can better support hybrid workloads (e.g. online purchase jobs and batch jobs that support ranking or recommendation systems). Successful cloud systems need to efficiently handle and quickly respond to huge volume of traffic with such hybrid workloads. Meanwhile, it is critical to reduce the total cost of ownership (TCO) for profitability. Improving system utilization is one of the effective techniques to achieve the twin goals of high performance and low TCO. This paper conducts a comprehensive analysis on the 2017 and 2018 cluster traces released by Alibaba, which provides a case study about Alibaba's best practices in improving the performance and cost efficiency of its large-scale cloud systems by consolidating time-sensitive online service jobs with time-insensitive batch jobs. Our investigation indicates that the over-subscription (causing resource waste and low utilization) and under-subscription (causing performance degradation) problems co-exist in the current Alibaba system. We develop a simulator that allows us to evaluate possible solutions to address this problem and their impact on the performance, energy consumption, and TCO. Our experiments show that the estimated TCO can be reduced by $600,000 for the 2018 trace running on over 4,000 machines without compromising performance. The TCO can decrease by nearly $68 million if similar strategy is extrapolated to Alibaba's 432,000 web facing servers. Data center efficiency Server utilization Workload scheduling Big data analysis Alibaba cluster trace Rajendran, Narmadha verfasserin aut Li, Xiaomin verfasserin aut Zong, Ziliang verfasserin (orcid)0000-0003-2693-7419 aut Enthalten in Sustainable Computing Amsterdam [u.a.] : Elsevier, 2011 30 Online-Ressource (DE-627)647657384 (DE-600)2596254-1 (DE-576)338519165 2210-5379 nnns volume:30 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 30 |
allfields_unstemmed |
10.1016/j.suscom.2021.100528 doi (DE-627)ELV006060390 (ELSEVIER)S2210-5379(21)00021-4 DE-627 ger DE-627 rda eng 004 DE-600 Everman, Brad verfasserin (orcid)0000-0002-2787-9874 aut Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provide new or significantly improve existing cloud services that can better support hybrid workloads (e.g. online purchase jobs and batch jobs that support ranking or recommendation systems). Successful cloud systems need to efficiently handle and quickly respond to huge volume of traffic with such hybrid workloads. Meanwhile, it is critical to reduce the total cost of ownership (TCO) for profitability. Improving system utilization is one of the effective techniques to achieve the twin goals of high performance and low TCO. This paper conducts a comprehensive analysis on the 2017 and 2018 cluster traces released by Alibaba, which provides a case study about Alibaba's best practices in improving the performance and cost efficiency of its large-scale cloud systems by consolidating time-sensitive online service jobs with time-insensitive batch jobs. Our investigation indicates that the over-subscription (causing resource waste and low utilization) and under-subscription (causing performance degradation) problems co-exist in the current Alibaba system. We develop a simulator that allows us to evaluate possible solutions to address this problem and their impact on the performance, energy consumption, and TCO. Our experiments show that the estimated TCO can be reduced by $600,000 for the 2018 trace running on over 4,000 machines without compromising performance. The TCO can decrease by nearly $68 million if similar strategy is extrapolated to Alibaba's 432,000 web facing servers. Data center efficiency Server utilization Workload scheduling Big data analysis Alibaba cluster trace Rajendran, Narmadha verfasserin aut Li, Xiaomin verfasserin aut Zong, Ziliang verfasserin (orcid)0000-0003-2693-7419 aut Enthalten in Sustainable Computing Amsterdam [u.a.] : Elsevier, 2011 30 Online-Ressource (DE-627)647657384 (DE-600)2596254-1 (DE-576)338519165 2210-5379 nnns volume:30 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 30 |
allfieldsGer |
10.1016/j.suscom.2021.100528 doi (DE-627)ELV006060390 (ELSEVIER)S2210-5379(21)00021-4 DE-627 ger DE-627 rda eng 004 DE-600 Everman, Brad verfasserin (orcid)0000-0002-2787-9874 aut Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provide new or significantly improve existing cloud services that can better support hybrid workloads (e.g. online purchase jobs and batch jobs that support ranking or recommendation systems). Successful cloud systems need to efficiently handle and quickly respond to huge volume of traffic with such hybrid workloads. Meanwhile, it is critical to reduce the total cost of ownership (TCO) for profitability. Improving system utilization is one of the effective techniques to achieve the twin goals of high performance and low TCO. This paper conducts a comprehensive analysis on the 2017 and 2018 cluster traces released by Alibaba, which provides a case study about Alibaba's best practices in improving the performance and cost efficiency of its large-scale cloud systems by consolidating time-sensitive online service jobs with time-insensitive batch jobs. Our investigation indicates that the over-subscription (causing resource waste and low utilization) and under-subscription (causing performance degradation) problems co-exist in the current Alibaba system. We develop a simulator that allows us to evaluate possible solutions to address this problem and their impact on the performance, energy consumption, and TCO. Our experiments show that the estimated TCO can be reduced by $600,000 for the 2018 trace running on over 4,000 machines without compromising performance. The TCO can decrease by nearly $68 million if similar strategy is extrapolated to Alibaba's 432,000 web facing servers. Data center efficiency Server utilization Workload scheduling Big data analysis Alibaba cluster trace Rajendran, Narmadha verfasserin aut Li, Xiaomin verfasserin aut Zong, Ziliang verfasserin (orcid)0000-0003-2693-7419 aut Enthalten in Sustainable Computing Amsterdam [u.a.] : Elsevier, 2011 30 Online-Ressource (DE-627)647657384 (DE-600)2596254-1 (DE-576)338519165 2210-5379 nnns volume:30 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 30 |
allfieldsSound |
10.1016/j.suscom.2021.100528 doi (DE-627)ELV006060390 (ELSEVIER)S2210-5379(21)00021-4 DE-627 ger DE-627 rda eng 004 DE-600 Everman, Brad verfasserin (orcid)0000-0002-2787-9874 aut Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provide new or significantly improve existing cloud services that can better support hybrid workloads (e.g. online purchase jobs and batch jobs that support ranking or recommendation systems). Successful cloud systems need to efficiently handle and quickly respond to huge volume of traffic with such hybrid workloads. Meanwhile, it is critical to reduce the total cost of ownership (TCO) for profitability. Improving system utilization is one of the effective techniques to achieve the twin goals of high performance and low TCO. This paper conducts a comprehensive analysis on the 2017 and 2018 cluster traces released by Alibaba, which provides a case study about Alibaba's best practices in improving the performance and cost efficiency of its large-scale cloud systems by consolidating time-sensitive online service jobs with time-insensitive batch jobs. Our investigation indicates that the over-subscription (causing resource waste and low utilization) and under-subscription (causing performance degradation) problems co-exist in the current Alibaba system. We develop a simulator that allows us to evaluate possible solutions to address this problem and their impact on the performance, energy consumption, and TCO. Our experiments show that the estimated TCO can be reduced by $600,000 for the 2018 trace running on over 4,000 machines without compromising performance. The TCO can decrease by nearly $68 million if similar strategy is extrapolated to Alibaba's 432,000 web facing servers. Data center efficiency Server utilization Workload scheduling Big data analysis Alibaba cluster trace Rajendran, Narmadha verfasserin aut Li, Xiaomin verfasserin aut Zong, Ziliang verfasserin (orcid)0000-0003-2693-7419 aut Enthalten in Sustainable Computing Amsterdam [u.a.] : Elsevier, 2011 30 Online-Ressource (DE-627)647657384 (DE-600)2596254-1 (DE-576)338519165 2210-5379 nnns volume:30 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 30 |
language |
English |
source |
Enthalten in Sustainable Computing 30 volume:30 |
sourceStr |
Enthalten in Sustainable Computing 30 volume:30 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Data center efficiency Server utilization Workload scheduling Big data analysis Alibaba cluster trace |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Sustainable Computing |
authorswithroles_txt_mv |
Everman, Brad @@aut@@ Rajendran, Narmadha @@aut@@ Li, Xiaomin @@aut@@ Zong, Ziliang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
647657384 |
dewey-sort |
14 |
id |
ELV006060390 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006060390</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154456.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.suscom.2021.100528</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006060390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S2210-5379(21)00021-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Everman, Brad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2787-9874</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provide new or significantly improve existing cloud services that can better support hybrid workloads (e.g. online purchase jobs and batch jobs that support ranking or recommendation systems). Successful cloud systems need to efficiently handle and quickly respond to huge volume of traffic with such hybrid workloads. Meanwhile, it is critical to reduce the total cost of ownership (TCO) for profitability. Improving system utilization is one of the effective techniques to achieve the twin goals of high performance and low TCO. This paper conducts a comprehensive analysis on the 2017 and 2018 cluster traces released by Alibaba, which provides a case study about Alibaba's best practices in improving the performance and cost efficiency of its large-scale cloud systems by consolidating time-sensitive online service jobs with time-insensitive batch jobs. Our investigation indicates that the over-subscription (causing resource waste and low utilization) and under-subscription (causing performance degradation) problems co-exist in the current Alibaba system. We develop a simulator that allows us to evaluate possible solutions to address this problem and their impact on the performance, energy consumption, and TCO. Our experiments show that the estimated TCO can be reduced by $600,000 for the 2018 trace running on over 4,000 machines without compromising performance. The TCO can decrease by nearly $68 million if similar strategy is extrapolated to Alibaba's 432,000 web facing servers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data center efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Server utilization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Workload scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alibaba cluster trace</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajendran, Narmadha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaomin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zong, Ziliang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2693-7419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sustainable Computing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2011</subfield><subfield code="g">30</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)647657384</subfield><subfield code="w">(DE-600)2596254-1</subfield><subfield code="w">(DE-576)338519165</subfield><subfield code="x">2210-5379</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield></datafield></record></collection>
|
author |
Everman, Brad |
spellingShingle |
Everman, Brad ddc 004 misc Data center efficiency misc Server utilization misc Workload scheduling misc Big data analysis misc Alibaba cluster trace Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces |
authorStr |
Everman, Brad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)647657384 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2210-5379 |
topic_title |
004 DE-600 Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces Data center efficiency Server utilization Workload scheduling Big data analysis Alibaba cluster trace |
topic |
ddc 004 misc Data center efficiency misc Server utilization misc Workload scheduling misc Big data analysis misc Alibaba cluster trace |
topic_unstemmed |
ddc 004 misc Data center efficiency misc Server utilization misc Workload scheduling misc Big data analysis misc Alibaba cluster trace |
topic_browse |
ddc 004 misc Data center efficiency misc Server utilization misc Workload scheduling misc Big data analysis misc Alibaba cluster trace |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainable Computing |
hierarchy_parent_id |
647657384 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Sustainable Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)647657384 (DE-600)2596254-1 (DE-576)338519165 |
title |
Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces |
ctrlnum |
(DE-627)ELV006060390 (ELSEVIER)S2210-5379(21)00021-4 |
title_full |
Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces |
author_sort |
Everman, Brad |
journal |
Sustainable Computing |
journalStr |
Sustainable Computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Everman, Brad Rajendran, Narmadha Li, Xiaomin Zong, Ziliang |
container_volume |
30 |
class |
004 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Everman, Brad |
doi_str_mv |
10.1016/j.suscom.2021.100528 |
normlink |
(ORCID)0000-0002-2787-9874 (ORCID)0000-0003-2693-7419 |
normlink_prefix_str_mv |
(orcid)0000-0002-2787-9874 (orcid)0000-0003-2693-7419 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
improving the cost efficiency of large-scale cloud systems running hybrid workloads - a case study of alibaba cluster traces |
title_auth |
Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces |
abstract |
The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provide new or significantly improve existing cloud services that can better support hybrid workloads (e.g. online purchase jobs and batch jobs that support ranking or recommendation systems). Successful cloud systems need to efficiently handle and quickly respond to huge volume of traffic with such hybrid workloads. Meanwhile, it is critical to reduce the total cost of ownership (TCO) for profitability. Improving system utilization is one of the effective techniques to achieve the twin goals of high performance and low TCO. This paper conducts a comprehensive analysis on the 2017 and 2018 cluster traces released by Alibaba, which provides a case study about Alibaba's best practices in improving the performance and cost efficiency of its large-scale cloud systems by consolidating time-sensitive online service jobs with time-insensitive batch jobs. Our investigation indicates that the over-subscription (causing resource waste and low utilization) and under-subscription (causing performance degradation) problems co-exist in the current Alibaba system. We develop a simulator that allows us to evaluate possible solutions to address this problem and their impact on the performance, energy consumption, and TCO. Our experiments show that the estimated TCO can be reduced by $600,000 for the 2018 trace running on over 4,000 machines without compromising performance. The TCO can decrease by nearly $68 million if similar strategy is extrapolated to Alibaba's 432,000 web facing servers. |
abstractGer |
The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provide new or significantly improve existing cloud services that can better support hybrid workloads (e.g. online purchase jobs and batch jobs that support ranking or recommendation systems). Successful cloud systems need to efficiently handle and quickly respond to huge volume of traffic with such hybrid workloads. Meanwhile, it is critical to reduce the total cost of ownership (TCO) for profitability. Improving system utilization is one of the effective techniques to achieve the twin goals of high performance and low TCO. This paper conducts a comprehensive analysis on the 2017 and 2018 cluster traces released by Alibaba, which provides a case study about Alibaba's best practices in improving the performance and cost efficiency of its large-scale cloud systems by consolidating time-sensitive online service jobs with time-insensitive batch jobs. Our investigation indicates that the over-subscription (causing resource waste and low utilization) and under-subscription (causing performance degradation) problems co-exist in the current Alibaba system. We develop a simulator that allows us to evaluate possible solutions to address this problem and their impact on the performance, energy consumption, and TCO. Our experiments show that the estimated TCO can be reduced by $600,000 for the 2018 trace running on over 4,000 machines without compromising performance. The TCO can decrease by nearly $68 million if similar strategy is extrapolated to Alibaba's 432,000 web facing servers. |
abstract_unstemmed |
The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provide new or significantly improve existing cloud services that can better support hybrid workloads (e.g. online purchase jobs and batch jobs that support ranking or recommendation systems). Successful cloud systems need to efficiently handle and quickly respond to huge volume of traffic with such hybrid workloads. Meanwhile, it is critical to reduce the total cost of ownership (TCO) for profitability. Improving system utilization is one of the effective techniques to achieve the twin goals of high performance and low TCO. This paper conducts a comprehensive analysis on the 2017 and 2018 cluster traces released by Alibaba, which provides a case study about Alibaba's best practices in improving the performance and cost efficiency of its large-scale cloud systems by consolidating time-sensitive online service jobs with time-insensitive batch jobs. Our investigation indicates that the over-subscription (causing resource waste and low utilization) and under-subscription (causing performance degradation) problems co-exist in the current Alibaba system. We develop a simulator that allows us to evaluate possible solutions to address this problem and their impact on the performance, energy consumption, and TCO. Our experiments show that the estimated TCO can be reduced by $600,000 for the 2018 trace running on over 4,000 machines without compromising performance. The TCO can decrease by nearly $68 million if similar strategy is extrapolated to Alibaba's 432,000 web facing servers. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces |
remote_bool |
true |
author2 |
Rajendran, Narmadha Li, Xiaomin Zong, Ziliang |
author2Str |
Rajendran, Narmadha Li, Xiaomin Zong, Ziliang |
ppnlink |
647657384 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.suscom.2021.100528 |
up_date |
2024-07-06T20:05:17.714Z |
_version_ |
1803861431645372416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006060390</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154456.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.suscom.2021.100528</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006060390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S2210-5379(21)00021-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Everman, Brad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2787-9874</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving the cost efficiency of large-scale cloud systems running hybrid workloads - A case study of Alibaba cluster traces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pandemic of coronavirus has dramatically disrupted the retail industry, as many stores are forced to close and people across the world are shelter-in-place with online shopping as the inevitable choice. To meet the rapidly increasing demand for e-commerce, more data centers are expected to provide new or significantly improve existing cloud services that can better support hybrid workloads (e.g. online purchase jobs and batch jobs that support ranking or recommendation systems). Successful cloud systems need to efficiently handle and quickly respond to huge volume of traffic with such hybrid workloads. Meanwhile, it is critical to reduce the total cost of ownership (TCO) for profitability. Improving system utilization is one of the effective techniques to achieve the twin goals of high performance and low TCO. This paper conducts a comprehensive analysis on the 2017 and 2018 cluster traces released by Alibaba, which provides a case study about Alibaba's best practices in improving the performance and cost efficiency of its large-scale cloud systems by consolidating time-sensitive online service jobs with time-insensitive batch jobs. Our investigation indicates that the over-subscription (causing resource waste and low utilization) and under-subscription (causing performance degradation) problems co-exist in the current Alibaba system. We develop a simulator that allows us to evaluate possible solutions to address this problem and their impact on the performance, energy consumption, and TCO. Our experiments show that the estimated TCO can be reduced by $600,000 for the 2018 trace running on over 4,000 machines without compromising performance. The TCO can decrease by nearly $68 million if similar strategy is extrapolated to Alibaba's 432,000 web facing servers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data center efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Server utilization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Workload scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alibaba cluster trace</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajendran, Narmadha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaomin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zong, Ziliang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2693-7419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sustainable Computing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2011</subfield><subfield code="g">30</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)647657384</subfield><subfield code="w">(DE-600)2596254-1</subfield><subfield code="w">(DE-576)338519165</subfield><subfield code="x">2210-5379</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield></datafield></record></collection>
|
score |
7.401025 |