Research on tool wear prediction based on temperature signals and deep learning

Tool condition monitoring is an important part of tool prediagnosis and health management systems. Accurate prediction of tool wear is greatly important for making full use of tool life, improving the production efficiency and product quality, and reducing tool costs. In this paper, an intelligent c...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

He, Zhaopeng [verfasserIn]

Shi, Tielin [verfasserIn]

Xuan, Jianping [verfasserIn]

Li, Tianxiang [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2021

Schlagwörter:

Tool wear

Deep learning

Stacked sparse autoencoders

Cutting temperature

Machine learning

Turning

Übergeordnetes Werk:

Enthalten in: Wear - Amsterdam [u.a.] : Elsevier Science, 1957, 478

Übergeordnetes Werk:

volume:478

DOI / URN:

10.1016/j.wear.2021.203902

Katalog-ID:

ELV006061494

Nicht das Richtige dabei?

Schreiben Sie uns!