Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region
A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to te...
Ausführliche Beschreibung
Autor*in: |
Li, Hao [verfasserIn] Yu, Ganglin [verfasserIn] Huang, Shanfang [verfasserIn] Wang, Kan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of nuclear energy - Amsterdam [u.a.] : Elsevier Science, 1975, 159 |
---|---|
Übergeordnetes Werk: |
volume:159 |
DOI / URN: |
10.1016/j.anucene.2021.108329 |
---|
Katalog-ID: |
ELV006105432 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006105432 | ||
003 | DE-627 | ||
005 | 20230524133413.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.anucene.2021.108329 |2 doi | |
035 | |a (DE-627)ELV006105432 | ||
035 | |a (ELSEVIER)S0306-4549(21)00205-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 33.00 |2 bkl | ||
084 | |a 52.55 |2 bkl | ||
100 | 1 | |a Li, Hao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to temperature. The main difficulty lies in calculating the derivatives of the microscopic cross-section with respect to the temperature. This paper presents a Temperature Perturbation Method (TPM) that incorporates on-the-fly cross-section treatment as well as the free gas model into the differential operator method to calculate derivatives of the k-eigenvalue with respect to fuel temperature. TPM was then used to predict the k-eigenvalue at various temperatures for the Mosteller pin model. The differences between TPM and the direct difference method are less than 3% within 3 times of standard deviation. The results indicate that TPM can accurately and efficiently estimate the derivatives of the k-eigenvalue with respect to the fuel temperature. | ||
650 | 4 | |a Temperature Perturbation | |
650 | 4 | |a Reactivity coefficient | |
650 | 4 | |a Derivative | |
650 | 4 | |a Monte carlo | |
650 | 4 | |a RMC | |
700 | 1 | |a Yu, Ganglin |e verfasserin |4 aut | |
700 | 1 | |a Huang, Shanfang |e verfasserin |4 aut | |
700 | 1 | |a Wang, Kan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of nuclear energy |d Amsterdam [u.a.] : Elsevier Science, 1975 |g 159 |h Online-Ressource |w (DE-627)320406679 |w (DE-600)2000768-1 |w (DE-576)120883511 |x 0306-4549 |7 nnns |
773 | 1 | 8 | |g volume:159 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.00 |j Physik: Allgemeines |
936 | b | k | |a 52.55 |j Kerntechnik |j Reaktortechnik |
951 | |a AR | ||
952 | |d 159 |
author_variant |
h l hl g y gy s h sh k w kw |
---|---|
matchkey_str |
article:03064549:2021----::eprtrprubtomtouignhfyramnotersscinit |
hierarchy_sort_str |
2021 |
bklnumber |
33.00 52.55 |
publishDate |
2021 |
allfields |
10.1016/j.anucene.2021.108329 doi (DE-627)ELV006105432 (ELSEVIER)S0306-4549(21)00205-X DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl 52.55 bkl Li, Hao verfasserin aut Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to temperature. The main difficulty lies in calculating the derivatives of the microscopic cross-section with respect to the temperature. This paper presents a Temperature Perturbation Method (TPM) that incorporates on-the-fly cross-section treatment as well as the free gas model into the differential operator method to calculate derivatives of the k-eigenvalue with respect to fuel temperature. TPM was then used to predict the k-eigenvalue at various temperatures for the Mosteller pin model. The differences between TPM and the direct difference method are less than 3% within 3 times of standard deviation. The results indicate that TPM can accurately and efficiently estimate the derivatives of the k-eigenvalue with respect to the fuel temperature. Temperature Perturbation Reactivity coefficient Derivative Monte carlo RMC Yu, Ganglin verfasserin aut Huang, Shanfang verfasserin aut Wang, Kan verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 159 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:159 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines 52.55 Kerntechnik Reaktortechnik AR 159 |
spelling |
10.1016/j.anucene.2021.108329 doi (DE-627)ELV006105432 (ELSEVIER)S0306-4549(21)00205-X DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl 52.55 bkl Li, Hao verfasserin aut Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to temperature. The main difficulty lies in calculating the derivatives of the microscopic cross-section with respect to the temperature. This paper presents a Temperature Perturbation Method (TPM) that incorporates on-the-fly cross-section treatment as well as the free gas model into the differential operator method to calculate derivatives of the k-eigenvalue with respect to fuel temperature. TPM was then used to predict the k-eigenvalue at various temperatures for the Mosteller pin model. The differences between TPM and the direct difference method are less than 3% within 3 times of standard deviation. The results indicate that TPM can accurately and efficiently estimate the derivatives of the k-eigenvalue with respect to the fuel temperature. Temperature Perturbation Reactivity coefficient Derivative Monte carlo RMC Yu, Ganglin verfasserin aut Huang, Shanfang verfasserin aut Wang, Kan verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 159 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:159 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines 52.55 Kerntechnik Reaktortechnik AR 159 |
allfields_unstemmed |
10.1016/j.anucene.2021.108329 doi (DE-627)ELV006105432 (ELSEVIER)S0306-4549(21)00205-X DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl 52.55 bkl Li, Hao verfasserin aut Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to temperature. The main difficulty lies in calculating the derivatives of the microscopic cross-section with respect to the temperature. This paper presents a Temperature Perturbation Method (TPM) that incorporates on-the-fly cross-section treatment as well as the free gas model into the differential operator method to calculate derivatives of the k-eigenvalue with respect to fuel temperature. TPM was then used to predict the k-eigenvalue at various temperatures for the Mosteller pin model. The differences between TPM and the direct difference method are less than 3% within 3 times of standard deviation. The results indicate that TPM can accurately and efficiently estimate the derivatives of the k-eigenvalue with respect to the fuel temperature. Temperature Perturbation Reactivity coefficient Derivative Monte carlo RMC Yu, Ganglin verfasserin aut Huang, Shanfang verfasserin aut Wang, Kan verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 159 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:159 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines 52.55 Kerntechnik Reaktortechnik AR 159 |
allfieldsGer |
10.1016/j.anucene.2021.108329 doi (DE-627)ELV006105432 (ELSEVIER)S0306-4549(21)00205-X DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl 52.55 bkl Li, Hao verfasserin aut Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to temperature. The main difficulty lies in calculating the derivatives of the microscopic cross-section with respect to the temperature. This paper presents a Temperature Perturbation Method (TPM) that incorporates on-the-fly cross-section treatment as well as the free gas model into the differential operator method to calculate derivatives of the k-eigenvalue with respect to fuel temperature. TPM was then used to predict the k-eigenvalue at various temperatures for the Mosteller pin model. The differences between TPM and the direct difference method are less than 3% within 3 times of standard deviation. The results indicate that TPM can accurately and efficiently estimate the derivatives of the k-eigenvalue with respect to the fuel temperature. Temperature Perturbation Reactivity coefficient Derivative Monte carlo RMC Yu, Ganglin verfasserin aut Huang, Shanfang verfasserin aut Wang, Kan verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 159 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:159 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines 52.55 Kerntechnik Reaktortechnik AR 159 |
allfieldsSound |
10.1016/j.anucene.2021.108329 doi (DE-627)ELV006105432 (ELSEVIER)S0306-4549(21)00205-X DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl 52.55 bkl Li, Hao verfasserin aut Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to temperature. The main difficulty lies in calculating the derivatives of the microscopic cross-section with respect to the temperature. This paper presents a Temperature Perturbation Method (TPM) that incorporates on-the-fly cross-section treatment as well as the free gas model into the differential operator method to calculate derivatives of the k-eigenvalue with respect to fuel temperature. TPM was then used to predict the k-eigenvalue at various temperatures for the Mosteller pin model. The differences between TPM and the direct difference method are less than 3% within 3 times of standard deviation. The results indicate that TPM can accurately and efficiently estimate the derivatives of the k-eigenvalue with respect to the fuel temperature. Temperature Perturbation Reactivity coefficient Derivative Monte carlo RMC Yu, Ganglin verfasserin aut Huang, Shanfang verfasserin aut Wang, Kan verfasserin aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 159 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:159 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines 52.55 Kerntechnik Reaktortechnik AR 159 |
language |
English |
source |
Enthalten in Annals of nuclear energy 159 volume:159 |
sourceStr |
Enthalten in Annals of nuclear energy 159 volume:159 |
format_phy_str_mv |
Article |
bklname |
Physik: Allgemeines Kerntechnik Reaktortechnik |
institution |
findex.gbv.de |
topic_facet |
Temperature Perturbation Reactivity coefficient Derivative Monte carlo RMC |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Annals of nuclear energy |
authorswithroles_txt_mv |
Li, Hao @@aut@@ Yu, Ganglin @@aut@@ Huang, Shanfang @@aut@@ Wang, Kan @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320406679 |
dewey-sort |
3530 |
id |
ELV006105432 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006105432</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524133413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.anucene.2021.108329</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006105432</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-4549(21)00205-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to temperature. The main difficulty lies in calculating the derivatives of the microscopic cross-section with respect to the temperature. This paper presents a Temperature Perturbation Method (TPM) that incorporates on-the-fly cross-section treatment as well as the free gas model into the differential operator method to calculate derivatives of the k-eigenvalue with respect to fuel temperature. TPM was then used to predict the k-eigenvalue at various temperatures for the Mosteller pin model. The differences between TPM and the direct difference method are less than 3% within 3 times of standard deviation. The results indicate that TPM can accurately and efficiently estimate the derivatives of the k-eigenvalue with respect to the fuel temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature Perturbation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactivity coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte carlo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RMC</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Ganglin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shanfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of nuclear energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">159</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406679</subfield><subfield code="w">(DE-600)2000768-1</subfield><subfield code="w">(DE-576)120883511</subfield><subfield code="x">0306-4549</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:159</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">159</subfield></datafield></record></collection>
|
author |
Li, Hao |
spellingShingle |
Li, Hao ddc 530 bkl 33.00 bkl 52.55 misc Temperature Perturbation misc Reactivity coefficient misc Derivative misc Monte carlo misc RMC Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region |
authorStr |
Li, Hao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320406679 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0306-4549 |
topic_title |
530 DE-600 33.00 bkl 52.55 bkl Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region Temperature Perturbation Reactivity coefficient Derivative Monte carlo RMC |
topic |
ddc 530 bkl 33.00 bkl 52.55 misc Temperature Perturbation misc Reactivity coefficient misc Derivative misc Monte carlo misc RMC |
topic_unstemmed |
ddc 530 bkl 33.00 bkl 52.55 misc Temperature Perturbation misc Reactivity coefficient misc Derivative misc Monte carlo misc RMC |
topic_browse |
ddc 530 bkl 33.00 bkl 52.55 misc Temperature Perturbation misc Reactivity coefficient misc Derivative misc Monte carlo misc RMC |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Annals of nuclear energy |
hierarchy_parent_id |
320406679 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Annals of nuclear energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 |
title |
Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region |
ctrlnum |
(DE-627)ELV006105432 (ELSEVIER)S0306-4549(21)00205-X |
title_full |
Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region |
author_sort |
Li, Hao |
journal |
Annals of nuclear energy |
journalStr |
Annals of nuclear energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Li, Hao Yu, Ganglin Huang, Shanfang Wang, Kan |
container_volume |
159 |
class |
530 DE-600 33.00 bkl 52.55 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Hao |
doi_str_mv |
10.1016/j.anucene.2021.108329 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region |
title_auth |
Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region |
abstract |
A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to temperature. The main difficulty lies in calculating the derivatives of the microscopic cross-section with respect to the temperature. This paper presents a Temperature Perturbation Method (TPM) that incorporates on-the-fly cross-section treatment as well as the free gas model into the differential operator method to calculate derivatives of the k-eigenvalue with respect to fuel temperature. TPM was then used to predict the k-eigenvalue at various temperatures for the Mosteller pin model. The differences between TPM and the direct difference method are less than 3% within 3 times of standard deviation. The results indicate that TPM can accurately and efficiently estimate the derivatives of the k-eigenvalue with respect to the fuel temperature. |
abstractGer |
A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to temperature. The main difficulty lies in calculating the derivatives of the microscopic cross-section with respect to the temperature. This paper presents a Temperature Perturbation Method (TPM) that incorporates on-the-fly cross-section treatment as well as the free gas model into the differential operator method to calculate derivatives of the k-eigenvalue with respect to fuel temperature. TPM was then used to predict the k-eigenvalue at various temperatures for the Mosteller pin model. The differences between TPM and the direct difference method are less than 3% within 3 times of standard deviation. The results indicate that TPM can accurately and efficiently estimate the derivatives of the k-eigenvalue with respect to the fuel temperature. |
abstract_unstemmed |
A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to temperature. The main difficulty lies in calculating the derivatives of the microscopic cross-section with respect to the temperature. This paper presents a Temperature Perturbation Method (TPM) that incorporates on-the-fly cross-section treatment as well as the free gas model into the differential operator method to calculate derivatives of the k-eigenvalue with respect to fuel temperature. TPM was then used to predict the k-eigenvalue at various temperatures for the Mosteller pin model. The differences between TPM and the direct difference method are less than 3% within 3 times of standard deviation. The results indicate that TPM can accurately and efficiently estimate the derivatives of the k-eigenvalue with respect to the fuel temperature. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region |
remote_bool |
true |
author2 |
Yu, Ganglin Huang, Shanfang Wang, Kan |
author2Str |
Yu, Ganglin Huang, Shanfang Wang, Kan |
ppnlink |
320406679 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.anucene.2021.108329 |
up_date |
2024-07-06T20:14:32.999Z |
_version_ |
1803862013902848000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006105432</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524133413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.anucene.2021.108329</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006105432</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-4549(21)00205-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temperature perturbation method using on-the-fly treatment of the cross-sections in the resolved resonance region</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A negative fuel temperature reactivity coefficient is an important reactor physical parameter that indicates the inherent reactor operating safety. However, existing Monte Carlo perturbation methods still cannot accurately and efficiently predict the derivative of the k-eigenvalue with respect to temperature. The main difficulty lies in calculating the derivatives of the microscopic cross-section with respect to the temperature. This paper presents a Temperature Perturbation Method (TPM) that incorporates on-the-fly cross-section treatment as well as the free gas model into the differential operator method to calculate derivatives of the k-eigenvalue with respect to fuel temperature. TPM was then used to predict the k-eigenvalue at various temperatures for the Mosteller pin model. The differences between TPM and the direct difference method are less than 3% within 3 times of standard deviation. The results indicate that TPM can accurately and efficiently estimate the derivatives of the k-eigenvalue with respect to the fuel temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature Perturbation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactivity coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte carlo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RMC</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Ganglin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shanfang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of nuclear energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">159</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406679</subfield><subfield code="w">(DE-600)2000768-1</subfield><subfield code="w">(DE-576)120883511</subfield><subfield code="x">0306-4549</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:159</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">159</subfield></datafield></record></collection>
|
score |
7.402011 |