CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane
Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that...
Ausführliche Beschreibung
Autor*in: |
Vandewalle, Laurien A. [verfasserIn] Marin, Guy B. [verfasserIn] Van Geem, Kevin M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chemical engineering and processing - Amsterdam [u.a.] : Elsevier, 1984, 165 |
---|---|
Übergeordnetes Werk: |
volume:165 |
DOI / URN: |
10.1016/j.cep.2021.108434 |
---|
Katalog-ID: |
ELV006158846 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006158846 | ||
003 | DE-627 | ||
005 | 20230524163500.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cep.2021.108434 |2 doi | |
035 | |a (DE-627)ELV006158846 | ||
035 | |a (ELSEVIER)S0255-2701(21)00136-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 58.17 |2 bkl | ||
100 | 1 | |a Vandewalle, Laurien A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that a GSVR exhibits at least the first of these two desired characteristics. Whether it also exhibits the second is less straightforward to verify. Our reactive CFD framework catchyFOAM is used to perform adiabatic simulations of a GSVR for OCM for a wide range of inlet temperatures (648 K – 1198 K), while fixing the inlet composition (CH4:O2 = 4), mass flow rate (3.6 10 −3kg s −1), catalyst mass (12 g) and total pressure (1, 2, 5 bar). This allowed to construct CFD-based bifurcation diagrams of the outlet temperature, conversions and selectivities versus inlet temperature. A wide window of steady-state multiplicity was simulated at 5 bar, with on the ignited branch a CH 4conversion of 37% and C 2selectivity of 72%, for an inlet temperature of only 698 K. This indicates that also the second criterion for an intensified OCM reactor, i.e., to allow steady-state multiplicity, can be met in a GSVR. | ||
650 | 4 | |a Computational fluid dynamics | |
650 | 4 | |a Oxidative coupling of methane | |
650 | 4 | |a Steady-state multiplicity | |
650 | 4 | |a Ignition | |
650 | 4 | |a Microkinetics | |
650 | 4 | |a Gas-solid vortex reactor | |
700 | 1 | |a Marin, Guy B. |e verfasserin |4 aut | |
700 | 1 | |a Van Geem, Kevin M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemical engineering and processing |d Amsterdam [u.a.] : Elsevier, 1984 |g 165 |h Online-Ressource |w (DE-627)320508803 |w (DE-600)2013149-5 |w (DE-576)094504075 |7 nnns |
773 | 1 | 8 | |g volume:165 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.17 |j Chemische Prozesstechnik |
951 | |a AR | ||
952 | |d 165 |
author_variant |
l a v la lav g b m gb gbm g k m v gkm gkmv |
---|---|
matchkey_str |
vandewallelaurienamaringuybvangeemkevinm:2021----:fbsdsesetftayttmlilctiaasldotxecofrx |
hierarchy_sort_str |
2021 |
bklnumber |
58.17 |
publishDate |
2021 |
allfields |
10.1016/j.cep.2021.108434 doi (DE-627)ELV006158846 (ELSEVIER)S0255-2701(21)00136-7 DE-627 ger DE-627 rda eng 660 DE-600 58.17 bkl Vandewalle, Laurien A. verfasserin aut CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that a GSVR exhibits at least the first of these two desired characteristics. Whether it also exhibits the second is less straightforward to verify. Our reactive CFD framework catchyFOAM is used to perform adiabatic simulations of a GSVR for OCM for a wide range of inlet temperatures (648 K – 1198 K), while fixing the inlet composition (CH4:O2 = 4), mass flow rate (3.6 10 −3kg s −1), catalyst mass (12 g) and total pressure (1, 2, 5 bar). This allowed to construct CFD-based bifurcation diagrams of the outlet temperature, conversions and selectivities versus inlet temperature. A wide window of steady-state multiplicity was simulated at 5 bar, with on the ignited branch a CH 4conversion of 37% and C 2selectivity of 72%, for an inlet temperature of only 698 K. This indicates that also the second criterion for an intensified OCM reactor, i.e., to allow steady-state multiplicity, can be met in a GSVR. Computational fluid dynamics Oxidative coupling of methane Steady-state multiplicity Ignition Microkinetics Gas-solid vortex reactor Marin, Guy B. verfasserin aut Van Geem, Kevin M. verfasserin aut Enthalten in Chemical engineering and processing Amsterdam [u.a.] : Elsevier, 1984 165 Online-Ressource (DE-627)320508803 (DE-600)2013149-5 (DE-576)094504075 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.17 Chemische Prozesstechnik AR 165 |
spelling |
10.1016/j.cep.2021.108434 doi (DE-627)ELV006158846 (ELSEVIER)S0255-2701(21)00136-7 DE-627 ger DE-627 rda eng 660 DE-600 58.17 bkl Vandewalle, Laurien A. verfasserin aut CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that a GSVR exhibits at least the first of these two desired characteristics. Whether it also exhibits the second is less straightforward to verify. Our reactive CFD framework catchyFOAM is used to perform adiabatic simulations of a GSVR for OCM for a wide range of inlet temperatures (648 K – 1198 K), while fixing the inlet composition (CH4:O2 = 4), mass flow rate (3.6 10 −3kg s −1), catalyst mass (12 g) and total pressure (1, 2, 5 bar). This allowed to construct CFD-based bifurcation diagrams of the outlet temperature, conversions and selectivities versus inlet temperature. A wide window of steady-state multiplicity was simulated at 5 bar, with on the ignited branch a CH 4conversion of 37% and C 2selectivity of 72%, for an inlet temperature of only 698 K. This indicates that also the second criterion for an intensified OCM reactor, i.e., to allow steady-state multiplicity, can be met in a GSVR. Computational fluid dynamics Oxidative coupling of methane Steady-state multiplicity Ignition Microkinetics Gas-solid vortex reactor Marin, Guy B. verfasserin aut Van Geem, Kevin M. verfasserin aut Enthalten in Chemical engineering and processing Amsterdam [u.a.] : Elsevier, 1984 165 Online-Ressource (DE-627)320508803 (DE-600)2013149-5 (DE-576)094504075 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.17 Chemische Prozesstechnik AR 165 |
allfields_unstemmed |
10.1016/j.cep.2021.108434 doi (DE-627)ELV006158846 (ELSEVIER)S0255-2701(21)00136-7 DE-627 ger DE-627 rda eng 660 DE-600 58.17 bkl Vandewalle, Laurien A. verfasserin aut CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that a GSVR exhibits at least the first of these two desired characteristics. Whether it also exhibits the second is less straightforward to verify. Our reactive CFD framework catchyFOAM is used to perform adiabatic simulations of a GSVR for OCM for a wide range of inlet temperatures (648 K – 1198 K), while fixing the inlet composition (CH4:O2 = 4), mass flow rate (3.6 10 −3kg s −1), catalyst mass (12 g) and total pressure (1, 2, 5 bar). This allowed to construct CFD-based bifurcation diagrams of the outlet temperature, conversions and selectivities versus inlet temperature. A wide window of steady-state multiplicity was simulated at 5 bar, with on the ignited branch a CH 4conversion of 37% and C 2selectivity of 72%, for an inlet temperature of only 698 K. This indicates that also the second criterion for an intensified OCM reactor, i.e., to allow steady-state multiplicity, can be met in a GSVR. Computational fluid dynamics Oxidative coupling of methane Steady-state multiplicity Ignition Microkinetics Gas-solid vortex reactor Marin, Guy B. verfasserin aut Van Geem, Kevin M. verfasserin aut Enthalten in Chemical engineering and processing Amsterdam [u.a.] : Elsevier, 1984 165 Online-Ressource (DE-627)320508803 (DE-600)2013149-5 (DE-576)094504075 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.17 Chemische Prozesstechnik AR 165 |
allfieldsGer |
10.1016/j.cep.2021.108434 doi (DE-627)ELV006158846 (ELSEVIER)S0255-2701(21)00136-7 DE-627 ger DE-627 rda eng 660 DE-600 58.17 bkl Vandewalle, Laurien A. verfasserin aut CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that a GSVR exhibits at least the first of these two desired characteristics. Whether it also exhibits the second is less straightforward to verify. Our reactive CFD framework catchyFOAM is used to perform adiabatic simulations of a GSVR for OCM for a wide range of inlet temperatures (648 K – 1198 K), while fixing the inlet composition (CH4:O2 = 4), mass flow rate (3.6 10 −3kg s −1), catalyst mass (12 g) and total pressure (1, 2, 5 bar). This allowed to construct CFD-based bifurcation diagrams of the outlet temperature, conversions and selectivities versus inlet temperature. A wide window of steady-state multiplicity was simulated at 5 bar, with on the ignited branch a CH 4conversion of 37% and C 2selectivity of 72%, for an inlet temperature of only 698 K. This indicates that also the second criterion for an intensified OCM reactor, i.e., to allow steady-state multiplicity, can be met in a GSVR. Computational fluid dynamics Oxidative coupling of methane Steady-state multiplicity Ignition Microkinetics Gas-solid vortex reactor Marin, Guy B. verfasserin aut Van Geem, Kevin M. verfasserin aut Enthalten in Chemical engineering and processing Amsterdam [u.a.] : Elsevier, 1984 165 Online-Ressource (DE-627)320508803 (DE-600)2013149-5 (DE-576)094504075 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.17 Chemische Prozesstechnik AR 165 |
allfieldsSound |
10.1016/j.cep.2021.108434 doi (DE-627)ELV006158846 (ELSEVIER)S0255-2701(21)00136-7 DE-627 ger DE-627 rda eng 660 DE-600 58.17 bkl Vandewalle, Laurien A. verfasserin aut CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that a GSVR exhibits at least the first of these two desired characteristics. Whether it also exhibits the second is less straightforward to verify. Our reactive CFD framework catchyFOAM is used to perform adiabatic simulations of a GSVR for OCM for a wide range of inlet temperatures (648 K – 1198 K), while fixing the inlet composition (CH4:O2 = 4), mass flow rate (3.6 10 −3kg s −1), catalyst mass (12 g) and total pressure (1, 2, 5 bar). This allowed to construct CFD-based bifurcation diagrams of the outlet temperature, conversions and selectivities versus inlet temperature. A wide window of steady-state multiplicity was simulated at 5 bar, with on the ignited branch a CH 4conversion of 37% and C 2selectivity of 72%, for an inlet temperature of only 698 K. This indicates that also the second criterion for an intensified OCM reactor, i.e., to allow steady-state multiplicity, can be met in a GSVR. Computational fluid dynamics Oxidative coupling of methane Steady-state multiplicity Ignition Microkinetics Gas-solid vortex reactor Marin, Guy B. verfasserin aut Van Geem, Kevin M. verfasserin aut Enthalten in Chemical engineering and processing Amsterdam [u.a.] : Elsevier, 1984 165 Online-Ressource (DE-627)320508803 (DE-600)2013149-5 (DE-576)094504075 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.17 Chemische Prozesstechnik AR 165 |
language |
English |
source |
Enthalten in Chemical engineering and processing 165 volume:165 |
sourceStr |
Enthalten in Chemical engineering and processing 165 volume:165 |
format_phy_str_mv |
Article |
bklname |
Chemische Prozesstechnik |
institution |
findex.gbv.de |
topic_facet |
Computational fluid dynamics Oxidative coupling of methane Steady-state multiplicity Ignition Microkinetics Gas-solid vortex reactor |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Chemical engineering and processing |
authorswithroles_txt_mv |
Vandewalle, Laurien A. @@aut@@ Marin, Guy B. @@aut@@ Van Geem, Kevin M. @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320508803 |
dewey-sort |
3660 |
id |
ELV006158846 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006158846</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524163500.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cep.2021.108434</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006158846</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0255-2701(21)00136-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vandewalle, Laurien A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that a GSVR exhibits at least the first of these two desired characteristics. Whether it also exhibits the second is less straightforward to verify. Our reactive CFD framework catchyFOAM is used to perform adiabatic simulations of a GSVR for OCM for a wide range of inlet temperatures (648 K – 1198 K), while fixing the inlet composition (CH4:O2 = 4), mass flow rate (3.6 10 −3kg s −1), catalyst mass (12 g) and total pressure (1, 2, 5 bar). This allowed to construct CFD-based bifurcation diagrams of the outlet temperature, conversions and selectivities versus inlet temperature. A wide window of steady-state multiplicity was simulated at 5 bar, with on the ignited branch a CH 4conversion of 37% and C 2selectivity of 72%, for an inlet temperature of only 698 K. This indicates that also the second criterion for an intensified OCM reactor, i.e., to allow steady-state multiplicity, can be met in a GSVR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidative coupling of methane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steady-state multiplicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ignition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microkinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas-solid vortex reactor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marin, Guy B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Geem, Kevin M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical engineering and processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1984</subfield><subfield code="g">165</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320508803</subfield><subfield code="w">(DE-600)2013149-5</subfield><subfield code="w">(DE-576)094504075</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.17</subfield><subfield code="j">Chemische Prozesstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield></datafield></record></collection>
|
author |
Vandewalle, Laurien A. |
spellingShingle |
Vandewalle, Laurien A. ddc 660 bkl 58.17 misc Computational fluid dynamics misc Oxidative coupling of methane misc Steady-state multiplicity misc Ignition misc Microkinetics misc Gas-solid vortex reactor CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane |
authorStr |
Vandewalle, Laurien A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320508803 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 DE-600 58.17 bkl CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane Computational fluid dynamics Oxidative coupling of methane Steady-state multiplicity Ignition Microkinetics Gas-solid vortex reactor |
topic |
ddc 660 bkl 58.17 misc Computational fluid dynamics misc Oxidative coupling of methane misc Steady-state multiplicity misc Ignition misc Microkinetics misc Gas-solid vortex reactor |
topic_unstemmed |
ddc 660 bkl 58.17 misc Computational fluid dynamics misc Oxidative coupling of methane misc Steady-state multiplicity misc Ignition misc Microkinetics misc Gas-solid vortex reactor |
topic_browse |
ddc 660 bkl 58.17 misc Computational fluid dynamics misc Oxidative coupling of methane misc Steady-state multiplicity misc Ignition misc Microkinetics misc Gas-solid vortex reactor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemical engineering and processing |
hierarchy_parent_id |
320508803 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Chemical engineering and processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320508803 (DE-600)2013149-5 (DE-576)094504075 |
title |
CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane |
ctrlnum |
(DE-627)ELV006158846 (ELSEVIER)S0255-2701(21)00136-7 |
title_full |
CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane |
author_sort |
Vandewalle, Laurien A. |
journal |
Chemical engineering and processing |
journalStr |
Chemical engineering and processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Vandewalle, Laurien A. Marin, Guy B. Van Geem, Kevin M. |
container_volume |
165 |
class |
660 DE-600 58.17 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Vandewalle, Laurien A. |
doi_str_mv |
10.1016/j.cep.2021.108434 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
cfd-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane |
title_auth |
CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane |
abstract |
Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that a GSVR exhibits at least the first of these two desired characteristics. Whether it also exhibits the second is less straightforward to verify. Our reactive CFD framework catchyFOAM is used to perform adiabatic simulations of a GSVR for OCM for a wide range of inlet temperatures (648 K – 1198 K), while fixing the inlet composition (CH4:O2 = 4), mass flow rate (3.6 10 −3kg s −1), catalyst mass (12 g) and total pressure (1, 2, 5 bar). This allowed to construct CFD-based bifurcation diagrams of the outlet temperature, conversions and selectivities versus inlet temperature. A wide window of steady-state multiplicity was simulated at 5 bar, with on the ignited branch a CH 4conversion of 37% and C 2selectivity of 72%, for an inlet temperature of only 698 K. This indicates that also the second criterion for an intensified OCM reactor, i.e., to allow steady-state multiplicity, can be met in a GSVR. |
abstractGer |
Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that a GSVR exhibits at least the first of these two desired characteristics. Whether it also exhibits the second is less straightforward to verify. Our reactive CFD framework catchyFOAM is used to perform adiabatic simulations of a GSVR for OCM for a wide range of inlet temperatures (648 K – 1198 K), while fixing the inlet composition (CH4:O2 = 4), mass flow rate (3.6 10 −3kg s −1), catalyst mass (12 g) and total pressure (1, 2, 5 bar). This allowed to construct CFD-based bifurcation diagrams of the outlet temperature, conversions and selectivities versus inlet temperature. A wide window of steady-state multiplicity was simulated at 5 bar, with on the ignited branch a CH 4conversion of 37% and C 2selectivity of 72%, for an inlet temperature of only 698 K. This indicates that also the second criterion for an intensified OCM reactor, i.e., to allow steady-state multiplicity, can be met in a GSVR. |
abstract_unstemmed |
Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that a GSVR exhibits at least the first of these two desired characteristics. Whether it also exhibits the second is less straightforward to verify. Our reactive CFD framework catchyFOAM is used to perform adiabatic simulations of a GSVR for OCM for a wide range of inlet temperatures (648 K – 1198 K), while fixing the inlet composition (CH4:O2 = 4), mass flow rate (3.6 10 −3kg s −1), catalyst mass (12 g) and total pressure (1, 2, 5 bar). This allowed to construct CFD-based bifurcation diagrams of the outlet temperature, conversions and selectivities versus inlet temperature. A wide window of steady-state multiplicity was simulated at 5 bar, with on the ignited branch a CH 4conversion of 37% and C 2selectivity of 72%, for an inlet temperature of only 698 K. This indicates that also the second criterion for an intensified OCM reactor, i.e., to allow steady-state multiplicity, can be met in a GSVR. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane |
remote_bool |
true |
author2 |
Marin, Guy B. Van Geem, Kevin M. |
author2Str |
Marin, Guy B. Van Geem, Kevin M. |
ppnlink |
320508803 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cep.2021.108434 |
up_date |
2024-07-06T20:25:29.136Z |
_version_ |
1803862701914456064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006158846</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524163500.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cep.2021.108434</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006158846</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0255-2701(21)00136-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vandewalle, Laurien A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Commercially viable OCM will depend largely on process intensification, i.e., innovative reactor and process design. Such an OCM reactor should have two characteristics: limited species backmixing and sufficient thermal backmixing. Short residence times with a narrow distribution have indicated that a GSVR exhibits at least the first of these two desired characteristics. Whether it also exhibits the second is less straightforward to verify. Our reactive CFD framework catchyFOAM is used to perform adiabatic simulations of a GSVR for OCM for a wide range of inlet temperatures (648 K – 1198 K), while fixing the inlet composition (CH4:O2 = 4), mass flow rate (3.6 10 −3kg s −1), catalyst mass (12 g) and total pressure (1, 2, 5 bar). This allowed to construct CFD-based bifurcation diagrams of the outlet temperature, conversions and selectivities versus inlet temperature. A wide window of steady-state multiplicity was simulated at 5 bar, with on the ignited branch a CH 4conversion of 37% and C 2selectivity of 72%, for an inlet temperature of only 698 K. This indicates that also the second criterion for an intensified OCM reactor, i.e., to allow steady-state multiplicity, can be met in a GSVR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidative coupling of methane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steady-state multiplicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ignition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microkinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas-solid vortex reactor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marin, Guy B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Geem, Kevin M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical engineering and processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1984</subfield><subfield code="g">165</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320508803</subfield><subfield code="w">(DE-600)2013149-5</subfield><subfield code="w">(DE-576)094504075</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.17</subfield><subfield code="j">Chemische Prozesstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield></datafield></record></collection>
|
score |
7.4017296 |