Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC
Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded duri...
Ausführliche Beschreibung
Autor*in: |
Du, Chunyan [verfasserIn] Huang, Shutao [verfasserIn] Yu, Xiaolin [verfasserIn] Wang, Quanzhao [verfasserIn] Zhao, Hui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Surface and coatings technology - Amsterdam [u.a.] : Elsevier Science, 1986, 420 |
---|---|
Übergeordnetes Werk: |
volume:420 |
DOI / URN: |
10.1016/j.surfcoat.2021.127321 |
---|
Katalog-ID: |
ELV006189288 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006189288 | ||
003 | DE-627 | ||
005 | 20230524150631.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.surfcoat.2021.127321 |2 doi | |
035 | |a (DE-627)ELV006189288 | ||
035 | |a (ELSEVIER)S0257-8972(21)00495-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 670 |q DE-600 |
084 | |a 52.78 |2 bkl | ||
084 | |a 51.20 |2 bkl | ||
100 | 1 | |a Du, Chunyan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded during the PEO process in a constant voltage mode. The surface and cross-section morphologies, composition and adhesive force of the coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and coating adhesion automatic scratch tester, respectively. The electrochemical corrosion behavior of the substrate and coated composites was investigated in 3.5% NaCl solution by potentiodynamic polarization tests and EIS. The results show that the current change trend and coating morphology features of the two type of composites were consistent. SiC particles at high volume fraction could hinder the formation of the film and the ejection of the melt, resulting in rough, uneven pores with variable sizes, coarse molten particles and micro-cracks on the coatings. There is ablation on 60 μm-SiC/Al coating. The PEO coating was mainly composed of mullite, α-Al2O3, γ-Al2O3 and amorphous phases. The adhesive force of coating on 40 μm-SiC/Al matrix composite (68.1 N) is better than that of 60 μm-SiC/Al matrix composite (22.0 N). The corrosion resistance of SiCp/Al matrix composite was improved by plasma electrolytic oxidation treatment. | ||
650 | 4 | |a SiC | |
650 | 4 | |a SiC particle | |
650 | 4 | |a Plasma electrolytic oxidation | |
650 | 4 | |a Microstructure | |
650 | 4 | |a Corrosion resistance | |
700 | 1 | |a Huang, Shutao |e verfasserin |4 aut | |
700 | 1 | |a Yu, Xiaolin |e verfasserin |4 aut | |
700 | 1 | |a Wang, Quanzhao |e verfasserin |4 aut | |
700 | 1 | |a Zhao, Hui |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Surface and coatings technology |d Amsterdam [u.a.] : Elsevier Science, 1986 |g 420 |h Online-Ressource |w (DE-627)308447522 |w (DE-600)1502240-7 |w (DE-576)098474049 |x 0257-8972 |7 nnns |
773 | 1 | 8 | |g volume:420 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |
936 | b | k | |a 51.20 |j Werkstoffoberflächeneigenschaften |
951 | |a AR | ||
952 | |d 420 |
author_variant |
c d cd s h sh x y xy q w qw h z hz |
---|---|
matchkey_str |
article:02578972:2021----::irsrcuenpoeteopameetoyioi |
hierarchy_sort_str |
2021 |
bklnumber |
52.78 51.20 |
publishDate |
2021 |
allfields |
10.1016/j.surfcoat.2021.127321 doi (DE-627)ELV006189288 (ELSEVIER)S0257-8972(21)00495-3 DE-627 ger DE-627 rda eng 620 670 DE-600 52.78 bkl 51.20 bkl Du, Chunyan verfasserin aut Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded during the PEO process in a constant voltage mode. The surface and cross-section morphologies, composition and adhesive force of the coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and coating adhesion automatic scratch tester, respectively. The electrochemical corrosion behavior of the substrate and coated composites was investigated in 3.5% NaCl solution by potentiodynamic polarization tests and EIS. The results show that the current change trend and coating morphology features of the two type of composites were consistent. SiC particles at high volume fraction could hinder the formation of the film and the ejection of the melt, resulting in rough, uneven pores with variable sizes, coarse molten particles and micro-cracks on the coatings. There is ablation on 60 μm-SiC/Al coating. The PEO coating was mainly composed of mullite, α-Al2O3, γ-Al2O3 and amorphous phases. The adhesive force of coating on 40 μm-SiC/Al matrix composite (68.1 N) is better than that of 60 μm-SiC/Al matrix composite (22.0 N). The corrosion resistance of SiCp/Al matrix composite was improved by plasma electrolytic oxidation treatment. SiC SiC particle Plasma electrolytic oxidation Microstructure Corrosion resistance Huang, Shutao verfasserin aut Yu, Xiaolin verfasserin aut Wang, Quanzhao verfasserin aut Zhao, Hui verfasserin aut Enthalten in Surface and coatings technology Amsterdam [u.a.] : Elsevier Science, 1986 420 Online-Ressource (DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 0257-8972 nnns volume:420 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.78 Oberflächentechnik Wärmebehandlung 51.20 Werkstoffoberflächeneigenschaften AR 420 |
spelling |
10.1016/j.surfcoat.2021.127321 doi (DE-627)ELV006189288 (ELSEVIER)S0257-8972(21)00495-3 DE-627 ger DE-627 rda eng 620 670 DE-600 52.78 bkl 51.20 bkl Du, Chunyan verfasserin aut Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded during the PEO process in a constant voltage mode. The surface and cross-section morphologies, composition and adhesive force of the coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and coating adhesion automatic scratch tester, respectively. The electrochemical corrosion behavior of the substrate and coated composites was investigated in 3.5% NaCl solution by potentiodynamic polarization tests and EIS. The results show that the current change trend and coating morphology features of the two type of composites were consistent. SiC particles at high volume fraction could hinder the formation of the film and the ejection of the melt, resulting in rough, uneven pores with variable sizes, coarse molten particles and micro-cracks on the coatings. There is ablation on 60 μm-SiC/Al coating. The PEO coating was mainly composed of mullite, α-Al2O3, γ-Al2O3 and amorphous phases. The adhesive force of coating on 40 μm-SiC/Al matrix composite (68.1 N) is better than that of 60 μm-SiC/Al matrix composite (22.0 N). The corrosion resistance of SiCp/Al matrix composite was improved by plasma electrolytic oxidation treatment. SiC SiC particle Plasma electrolytic oxidation Microstructure Corrosion resistance Huang, Shutao verfasserin aut Yu, Xiaolin verfasserin aut Wang, Quanzhao verfasserin aut Zhao, Hui verfasserin aut Enthalten in Surface and coatings technology Amsterdam [u.a.] : Elsevier Science, 1986 420 Online-Ressource (DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 0257-8972 nnns volume:420 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.78 Oberflächentechnik Wärmebehandlung 51.20 Werkstoffoberflächeneigenschaften AR 420 |
allfields_unstemmed |
10.1016/j.surfcoat.2021.127321 doi (DE-627)ELV006189288 (ELSEVIER)S0257-8972(21)00495-3 DE-627 ger DE-627 rda eng 620 670 DE-600 52.78 bkl 51.20 bkl Du, Chunyan verfasserin aut Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded during the PEO process in a constant voltage mode. The surface and cross-section morphologies, composition and adhesive force of the coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and coating adhesion automatic scratch tester, respectively. The electrochemical corrosion behavior of the substrate and coated composites was investigated in 3.5% NaCl solution by potentiodynamic polarization tests and EIS. The results show that the current change trend and coating morphology features of the two type of composites were consistent. SiC particles at high volume fraction could hinder the formation of the film and the ejection of the melt, resulting in rough, uneven pores with variable sizes, coarse molten particles and micro-cracks on the coatings. There is ablation on 60 μm-SiC/Al coating. The PEO coating was mainly composed of mullite, α-Al2O3, γ-Al2O3 and amorphous phases. The adhesive force of coating on 40 μm-SiC/Al matrix composite (68.1 N) is better than that of 60 μm-SiC/Al matrix composite (22.0 N). The corrosion resistance of SiCp/Al matrix composite was improved by plasma electrolytic oxidation treatment. SiC SiC particle Plasma electrolytic oxidation Microstructure Corrosion resistance Huang, Shutao verfasserin aut Yu, Xiaolin verfasserin aut Wang, Quanzhao verfasserin aut Zhao, Hui verfasserin aut Enthalten in Surface and coatings technology Amsterdam [u.a.] : Elsevier Science, 1986 420 Online-Ressource (DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 0257-8972 nnns volume:420 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.78 Oberflächentechnik Wärmebehandlung 51.20 Werkstoffoberflächeneigenschaften AR 420 |
allfieldsGer |
10.1016/j.surfcoat.2021.127321 doi (DE-627)ELV006189288 (ELSEVIER)S0257-8972(21)00495-3 DE-627 ger DE-627 rda eng 620 670 DE-600 52.78 bkl 51.20 bkl Du, Chunyan verfasserin aut Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded during the PEO process in a constant voltage mode. The surface and cross-section morphologies, composition and adhesive force of the coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and coating adhesion automatic scratch tester, respectively. The electrochemical corrosion behavior of the substrate and coated composites was investigated in 3.5% NaCl solution by potentiodynamic polarization tests and EIS. The results show that the current change trend and coating morphology features of the two type of composites were consistent. SiC particles at high volume fraction could hinder the formation of the film and the ejection of the melt, resulting in rough, uneven pores with variable sizes, coarse molten particles and micro-cracks on the coatings. There is ablation on 60 μm-SiC/Al coating. The PEO coating was mainly composed of mullite, α-Al2O3, γ-Al2O3 and amorphous phases. The adhesive force of coating on 40 μm-SiC/Al matrix composite (68.1 N) is better than that of 60 μm-SiC/Al matrix composite (22.0 N). The corrosion resistance of SiCp/Al matrix composite was improved by plasma electrolytic oxidation treatment. SiC SiC particle Plasma electrolytic oxidation Microstructure Corrosion resistance Huang, Shutao verfasserin aut Yu, Xiaolin verfasserin aut Wang, Quanzhao verfasserin aut Zhao, Hui verfasserin aut Enthalten in Surface and coatings technology Amsterdam [u.a.] : Elsevier Science, 1986 420 Online-Ressource (DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 0257-8972 nnns volume:420 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.78 Oberflächentechnik Wärmebehandlung 51.20 Werkstoffoberflächeneigenschaften AR 420 |
allfieldsSound |
10.1016/j.surfcoat.2021.127321 doi (DE-627)ELV006189288 (ELSEVIER)S0257-8972(21)00495-3 DE-627 ger DE-627 rda eng 620 670 DE-600 52.78 bkl 51.20 bkl Du, Chunyan verfasserin aut Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded during the PEO process in a constant voltage mode. The surface and cross-section morphologies, composition and adhesive force of the coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and coating adhesion automatic scratch tester, respectively. The electrochemical corrosion behavior of the substrate and coated composites was investigated in 3.5% NaCl solution by potentiodynamic polarization tests and EIS. The results show that the current change trend and coating morphology features of the two type of composites were consistent. SiC particles at high volume fraction could hinder the formation of the film and the ejection of the melt, resulting in rough, uneven pores with variable sizes, coarse molten particles and micro-cracks on the coatings. There is ablation on 60 μm-SiC/Al coating. The PEO coating was mainly composed of mullite, α-Al2O3, γ-Al2O3 and amorphous phases. The adhesive force of coating on 40 μm-SiC/Al matrix composite (68.1 N) is better than that of 60 μm-SiC/Al matrix composite (22.0 N). The corrosion resistance of SiCp/Al matrix composite was improved by plasma electrolytic oxidation treatment. SiC SiC particle Plasma electrolytic oxidation Microstructure Corrosion resistance Huang, Shutao verfasserin aut Yu, Xiaolin verfasserin aut Wang, Quanzhao verfasserin aut Zhao, Hui verfasserin aut Enthalten in Surface and coatings technology Amsterdam [u.a.] : Elsevier Science, 1986 420 Online-Ressource (DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 0257-8972 nnns volume:420 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.78 Oberflächentechnik Wärmebehandlung 51.20 Werkstoffoberflächeneigenschaften AR 420 |
language |
English |
source |
Enthalten in Surface and coatings technology 420 volume:420 |
sourceStr |
Enthalten in Surface and coatings technology 420 volume:420 |
format_phy_str_mv |
Article |
bklname |
Oberflächentechnik Wärmebehandlung Werkstoffoberflächeneigenschaften |
institution |
findex.gbv.de |
topic_facet |
SiC SiC particle Plasma electrolytic oxidation Microstructure Corrosion resistance |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Surface and coatings technology |
authorswithroles_txt_mv |
Du, Chunyan @@aut@@ Huang, Shutao @@aut@@ Yu, Xiaolin @@aut@@ Wang, Quanzhao @@aut@@ Zhao, Hui @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
308447522 |
dewey-sort |
3620 |
id |
ELV006189288 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006189288</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150631.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.surfcoat.2021.127321</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006189288</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0257-8972(21)00495-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Du, Chunyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded during the PEO process in a constant voltage mode. The surface and cross-section morphologies, composition and adhesive force of the coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and coating adhesion automatic scratch tester, respectively. The electrochemical corrosion behavior of the substrate and coated composites was investigated in 3.5% NaCl solution by potentiodynamic polarization tests and EIS. The results show that the current change trend and coating morphology features of the two type of composites were consistent. SiC particles at high volume fraction could hinder the formation of the film and the ejection of the melt, resulting in rough, uneven pores with variable sizes, coarse molten particles and micro-cracks on the coatings. There is ablation on 60 μm-SiC/Al coating. The PEO coating was mainly composed of mullite, α-Al2O3, γ-Al2O3 and amorphous phases. The adhesive force of coating on 40 μm-SiC/Al matrix composite (68.1 N) is better than that of 60 μm-SiC/Al matrix composite (22.0 N). The corrosion resistance of SiCp/Al matrix composite was improved by plasma electrolytic oxidation treatment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SiC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SiC particle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma electrolytic oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion resistance</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shutao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Xiaolin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Quanzhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Surface and coatings technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1986</subfield><subfield code="g">420</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447522</subfield><subfield code="w">(DE-600)1502240-7</subfield><subfield code="w">(DE-576)098474049</subfield><subfield code="x">0257-8972</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:420</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.20</subfield><subfield code="j">Werkstoffoberflächeneigenschaften</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">420</subfield></datafield></record></collection>
|
author |
Du, Chunyan |
spellingShingle |
Du, Chunyan ddc 620 bkl 52.78 bkl 51.20 misc SiC misc SiC particle misc Plasma electrolytic oxidation misc Microstructure misc Corrosion resistance Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC |
authorStr |
Du, Chunyan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)308447522 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0257-8972 |
topic_title |
620 670 DE-600 52.78 bkl 51.20 bkl Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC SiC SiC particle Plasma electrolytic oxidation Microstructure Corrosion resistance |
topic |
ddc 620 bkl 52.78 bkl 51.20 misc SiC misc SiC particle misc Plasma electrolytic oxidation misc Microstructure misc Corrosion resistance |
topic_unstemmed |
ddc 620 bkl 52.78 bkl 51.20 misc SiC misc SiC particle misc Plasma electrolytic oxidation misc Microstructure misc Corrosion resistance |
topic_browse |
ddc 620 bkl 52.78 bkl 51.20 misc SiC misc SiC particle misc Plasma electrolytic oxidation misc Microstructure misc Corrosion resistance |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Surface and coatings technology |
hierarchy_parent_id |
308447522 |
dewey-tens |
620 - Engineering 670 - Manufacturing |
hierarchy_top_title |
Surface and coatings technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 |
title |
Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC |
ctrlnum |
(DE-627)ELV006189288 (ELSEVIER)S0257-8972(21)00495-3 |
title_full |
Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC |
author_sort |
Du, Chunyan |
journal |
Surface and coatings technology |
journalStr |
Surface and coatings technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Du, Chunyan Huang, Shutao Yu, Xiaolin Wang, Quanzhao Zhao, Hui |
container_volume |
420 |
class |
620 670 DE-600 52.78 bkl 51.20 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Du, Chunyan |
doi_str_mv |
10.1016/j.surfcoat.2021.127321 |
dewey-full |
620 670 |
author2-role |
verfasserin |
title_sort |
microstructure and properties of plasma electrolytic oxidation coating on 55% sic |
title_auth |
Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC |
abstract |
Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded during the PEO process in a constant voltage mode. The surface and cross-section morphologies, composition and adhesive force of the coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and coating adhesion automatic scratch tester, respectively. The electrochemical corrosion behavior of the substrate and coated composites was investigated in 3.5% NaCl solution by potentiodynamic polarization tests and EIS. The results show that the current change trend and coating morphology features of the two type of composites were consistent. SiC particles at high volume fraction could hinder the formation of the film and the ejection of the melt, resulting in rough, uneven pores with variable sizes, coarse molten particles and micro-cracks on the coatings. There is ablation on 60 μm-SiC/Al coating. The PEO coating was mainly composed of mullite, α-Al2O3, γ-Al2O3 and amorphous phases. The adhesive force of coating on 40 μm-SiC/Al matrix composite (68.1 N) is better than that of 60 μm-SiC/Al matrix composite (22.0 N). The corrosion resistance of SiCp/Al matrix composite was improved by plasma electrolytic oxidation treatment. |
abstractGer |
Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded during the PEO process in a constant voltage mode. The surface and cross-section morphologies, composition and adhesive force of the coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and coating adhesion automatic scratch tester, respectively. The electrochemical corrosion behavior of the substrate and coated composites was investigated in 3.5% NaCl solution by potentiodynamic polarization tests and EIS. The results show that the current change trend and coating morphology features of the two type of composites were consistent. SiC particles at high volume fraction could hinder the formation of the film and the ejection of the melt, resulting in rough, uneven pores with variable sizes, coarse molten particles and micro-cracks on the coatings. There is ablation on 60 μm-SiC/Al coating. The PEO coating was mainly composed of mullite, α-Al2O3, γ-Al2O3 and amorphous phases. The adhesive force of coating on 40 μm-SiC/Al matrix composite (68.1 N) is better than that of 60 μm-SiC/Al matrix composite (22.0 N). The corrosion resistance of SiCp/Al matrix composite was improved by plasma electrolytic oxidation treatment. |
abstract_unstemmed |
Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded during the PEO process in a constant voltage mode. The surface and cross-section morphologies, composition and adhesive force of the coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and coating adhesion automatic scratch tester, respectively. The electrochemical corrosion behavior of the substrate and coated composites was investigated in 3.5% NaCl solution by potentiodynamic polarization tests and EIS. The results show that the current change trend and coating morphology features of the two type of composites were consistent. SiC particles at high volume fraction could hinder the formation of the film and the ejection of the melt, resulting in rough, uneven pores with variable sizes, coarse molten particles and micro-cracks on the coatings. There is ablation on 60 μm-SiC/Al coating. The PEO coating was mainly composed of mullite, α-Al2O3, γ-Al2O3 and amorphous phases. The adhesive force of coating on 40 μm-SiC/Al matrix composite (68.1 N) is better than that of 60 μm-SiC/Al matrix composite (22.0 N). The corrosion resistance of SiCp/Al matrix composite was improved by plasma electrolytic oxidation treatment. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC |
remote_bool |
true |
author2 |
Huang, Shutao Yu, Xiaolin Wang, Quanzhao Zhao, Hui |
author2Str |
Huang, Shutao Yu, Xiaolin Wang, Quanzhao Zhao, Hui |
ppnlink |
308447522 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.surfcoat.2021.127321 |
up_date |
2024-07-06T20:31:45.264Z |
_version_ |
1803863096311152640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006189288</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150631.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.surfcoat.2021.127321</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006189288</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0257-8972(21)00495-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Du, Chunyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructure and properties of plasma electrolytic oxidation coating on 55% SiC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Protective coating was successfully prepared on two types of SiCp/Al matrix composites by plasma electrolytic oxidation (PEO) method, where the SiCp/Al matrix composites contains high volume fraction of SiC particles with sizes of 60 μm and 40 μm, respectively. Current-time curves were recorded during the PEO process in a constant voltage mode. The surface and cross-section morphologies, composition and adhesive force of the coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and coating adhesion automatic scratch tester, respectively. The electrochemical corrosion behavior of the substrate and coated composites was investigated in 3.5% NaCl solution by potentiodynamic polarization tests and EIS. The results show that the current change trend and coating morphology features of the two type of composites were consistent. SiC particles at high volume fraction could hinder the formation of the film and the ejection of the melt, resulting in rough, uneven pores with variable sizes, coarse molten particles and micro-cracks on the coatings. There is ablation on 60 μm-SiC/Al coating. The PEO coating was mainly composed of mullite, α-Al2O3, γ-Al2O3 and amorphous phases. The adhesive force of coating on 40 μm-SiC/Al matrix composite (68.1 N) is better than that of 60 μm-SiC/Al matrix composite (22.0 N). The corrosion resistance of SiCp/Al matrix composite was improved by plasma electrolytic oxidation treatment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SiC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SiC particle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma electrolytic oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corrosion resistance</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shutao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Xiaolin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Quanzhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Surface and coatings technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1986</subfield><subfield code="g">420</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447522</subfield><subfield code="w">(DE-600)1502240-7</subfield><subfield code="w">(DE-576)098474049</subfield><subfield code="x">0257-8972</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:420</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.20</subfield><subfield code="j">Werkstoffoberflächeneigenschaften</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">420</subfield></datafield></record></collection>
|
score |
7.4016743 |