Uniformity of saturated orthogonal arrays
Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that per...
Ausführliche Beschreibung
Autor*in: |
Chen, E [verfasserIn] Tang, Yu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of statistical planning and inference - Amsterdam : North-Holland Publ. Co., 1977, 216, Seite 174-181 |
---|---|
Übergeordnetes Werk: |
volume:216 ; pages:174-181 |
DOI / URN: |
10.1016/j.jspi.2021.06.002 |
---|
Katalog-ID: |
ELV006409741 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006409741 | ||
003 | DE-627 | ||
005 | 20230524164936.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jspi.2021.06.002 |2 doi | |
035 | |a (DE-627)ELV006409741 | ||
035 | |a (ELSEVIER)S0378-3758(21)00067-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 000 |a 310 |q DE-600 |
084 | |a 31.73 |2 bkl | ||
100 | 1 | |a Chen, E |e verfasserin |4 aut | |
245 | 1 | 0 | |a Uniformity of saturated orthogonal arrays |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that permuting levels of orthogonal arrays will alter their statistical inference abilities. Criteria have been recommended for evaluating the different performance of orthogonal arrays. In this paper, a revised method is proposed to construct saturated orthogonal arrays when the level of the factors is an odd prime and properties of the related wrap-around L 2 -discrepancy will be investigated. Theoretical result shows that the wrap-around L 2 -discrepancies of the saturated orthogonal arrays constructed using the revised method are less than those of the original ones, and asymptotically attain the lower bounds. A series of numerical examples also confirms the effectiveness of the proposed method. | ||
650 | 4 | |a Saturated orthogonal array | |
650 | 4 | |a Uniform design | |
650 | 4 | |a Word-length pattern | |
650 | 4 | |a Wrap-around | |
700 | 1 | |a Tang, Yu |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of statistical planning and inference |d Amsterdam : North-Holland Publ. Co., 1977 |g 216, Seite 174-181 |h Online-Ressource |w (DE-627)266882307 |w (DE-600)1468074-9 |w (DE-576)09405830X |x 0378-3758 |7 nnns |
773 | 1 | 8 | |g volume:216 |g pages:174-181 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 31.73 |j Mathematische Statistik |
951 | |a AR | ||
952 | |d 216 |h 174-181 |
author_variant |
e c ec y t yt |
---|---|
matchkey_str |
article:03783758:2021----::nfriyfauaeoto |
hierarchy_sort_str |
2021 |
bklnumber |
31.73 |
publishDate |
2021 |
allfields |
10.1016/j.jspi.2021.06.002 doi (DE-627)ELV006409741 (ELSEVIER)S0378-3758(21)00067-7 DE-627 ger DE-627 rda eng 510 000 310 DE-600 31.73 bkl Chen, E verfasserin aut Uniformity of saturated orthogonal arrays 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that permuting levels of orthogonal arrays will alter their statistical inference abilities. Criteria have been recommended for evaluating the different performance of orthogonal arrays. In this paper, a revised method is proposed to construct saturated orthogonal arrays when the level of the factors is an odd prime and properties of the related wrap-around L 2 -discrepancy will be investigated. Theoretical result shows that the wrap-around L 2 -discrepancies of the saturated orthogonal arrays constructed using the revised method are less than those of the original ones, and asymptotically attain the lower bounds. A series of numerical examples also confirms the effectiveness of the proposed method. Saturated orthogonal array Uniform design Word-length pattern Wrap-around Tang, Yu verfasserin aut Enthalten in Journal of statistical planning and inference Amsterdam : North-Holland Publ. Co., 1977 216, Seite 174-181 Online-Ressource (DE-627)266882307 (DE-600)1468074-9 (DE-576)09405830X 0378-3758 nnns volume:216 pages:174-181 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.73 Mathematische Statistik AR 216 174-181 |
spelling |
10.1016/j.jspi.2021.06.002 doi (DE-627)ELV006409741 (ELSEVIER)S0378-3758(21)00067-7 DE-627 ger DE-627 rda eng 510 000 310 DE-600 31.73 bkl Chen, E verfasserin aut Uniformity of saturated orthogonal arrays 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that permuting levels of orthogonal arrays will alter their statistical inference abilities. Criteria have been recommended for evaluating the different performance of orthogonal arrays. In this paper, a revised method is proposed to construct saturated orthogonal arrays when the level of the factors is an odd prime and properties of the related wrap-around L 2 -discrepancy will be investigated. Theoretical result shows that the wrap-around L 2 -discrepancies of the saturated orthogonal arrays constructed using the revised method are less than those of the original ones, and asymptotically attain the lower bounds. A series of numerical examples also confirms the effectiveness of the proposed method. Saturated orthogonal array Uniform design Word-length pattern Wrap-around Tang, Yu verfasserin aut Enthalten in Journal of statistical planning and inference Amsterdam : North-Holland Publ. Co., 1977 216, Seite 174-181 Online-Ressource (DE-627)266882307 (DE-600)1468074-9 (DE-576)09405830X 0378-3758 nnns volume:216 pages:174-181 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.73 Mathematische Statistik AR 216 174-181 |
allfields_unstemmed |
10.1016/j.jspi.2021.06.002 doi (DE-627)ELV006409741 (ELSEVIER)S0378-3758(21)00067-7 DE-627 ger DE-627 rda eng 510 000 310 DE-600 31.73 bkl Chen, E verfasserin aut Uniformity of saturated orthogonal arrays 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that permuting levels of orthogonal arrays will alter their statistical inference abilities. Criteria have been recommended for evaluating the different performance of orthogonal arrays. In this paper, a revised method is proposed to construct saturated orthogonal arrays when the level of the factors is an odd prime and properties of the related wrap-around L 2 -discrepancy will be investigated. Theoretical result shows that the wrap-around L 2 -discrepancies of the saturated orthogonal arrays constructed using the revised method are less than those of the original ones, and asymptotically attain the lower bounds. A series of numerical examples also confirms the effectiveness of the proposed method. Saturated orthogonal array Uniform design Word-length pattern Wrap-around Tang, Yu verfasserin aut Enthalten in Journal of statistical planning and inference Amsterdam : North-Holland Publ. Co., 1977 216, Seite 174-181 Online-Ressource (DE-627)266882307 (DE-600)1468074-9 (DE-576)09405830X 0378-3758 nnns volume:216 pages:174-181 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.73 Mathematische Statistik AR 216 174-181 |
allfieldsGer |
10.1016/j.jspi.2021.06.002 doi (DE-627)ELV006409741 (ELSEVIER)S0378-3758(21)00067-7 DE-627 ger DE-627 rda eng 510 000 310 DE-600 31.73 bkl Chen, E verfasserin aut Uniformity of saturated orthogonal arrays 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that permuting levels of orthogonal arrays will alter their statistical inference abilities. Criteria have been recommended for evaluating the different performance of orthogonal arrays. In this paper, a revised method is proposed to construct saturated orthogonal arrays when the level of the factors is an odd prime and properties of the related wrap-around L 2 -discrepancy will be investigated. Theoretical result shows that the wrap-around L 2 -discrepancies of the saturated orthogonal arrays constructed using the revised method are less than those of the original ones, and asymptotically attain the lower bounds. A series of numerical examples also confirms the effectiveness of the proposed method. Saturated orthogonal array Uniform design Word-length pattern Wrap-around Tang, Yu verfasserin aut Enthalten in Journal of statistical planning and inference Amsterdam : North-Holland Publ. Co., 1977 216, Seite 174-181 Online-Ressource (DE-627)266882307 (DE-600)1468074-9 (DE-576)09405830X 0378-3758 nnns volume:216 pages:174-181 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.73 Mathematische Statistik AR 216 174-181 |
allfieldsSound |
10.1016/j.jspi.2021.06.002 doi (DE-627)ELV006409741 (ELSEVIER)S0378-3758(21)00067-7 DE-627 ger DE-627 rda eng 510 000 310 DE-600 31.73 bkl Chen, E verfasserin aut Uniformity of saturated orthogonal arrays 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that permuting levels of orthogonal arrays will alter their statistical inference abilities. Criteria have been recommended for evaluating the different performance of orthogonal arrays. In this paper, a revised method is proposed to construct saturated orthogonal arrays when the level of the factors is an odd prime and properties of the related wrap-around L 2 -discrepancy will be investigated. Theoretical result shows that the wrap-around L 2 -discrepancies of the saturated orthogonal arrays constructed using the revised method are less than those of the original ones, and asymptotically attain the lower bounds. A series of numerical examples also confirms the effectiveness of the proposed method. Saturated orthogonal array Uniform design Word-length pattern Wrap-around Tang, Yu verfasserin aut Enthalten in Journal of statistical planning and inference Amsterdam : North-Holland Publ. Co., 1977 216, Seite 174-181 Online-Ressource (DE-627)266882307 (DE-600)1468074-9 (DE-576)09405830X 0378-3758 nnns volume:216 pages:174-181 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.73 Mathematische Statistik AR 216 174-181 |
language |
English |
source |
Enthalten in Journal of statistical planning and inference 216, Seite 174-181 volume:216 pages:174-181 |
sourceStr |
Enthalten in Journal of statistical planning and inference 216, Seite 174-181 volume:216 pages:174-181 |
format_phy_str_mv |
Article |
bklname |
Mathematische Statistik |
institution |
findex.gbv.de |
topic_facet |
Saturated orthogonal array Uniform design Word-length pattern Wrap-around |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of statistical planning and inference |
authorswithroles_txt_mv |
Chen, E @@aut@@ Tang, Yu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
266882307 |
dewey-sort |
3510 |
id |
ELV006409741 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006409741</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524164936.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jspi.2021.06.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006409741</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-3758(21)00067-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="a">310</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, E</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Uniformity of saturated orthogonal arrays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that permuting levels of orthogonal arrays will alter their statistical inference abilities. Criteria have been recommended for evaluating the different performance of orthogonal arrays. In this paper, a revised method is proposed to construct saturated orthogonal arrays when the level of the factors is an odd prime and properties of the related wrap-around L 2 -discrepancy will be investigated. Theoretical result shows that the wrap-around L 2 -discrepancies of the saturated orthogonal arrays constructed using the revised method are less than those of the original ones, and asymptotically attain the lower bounds. A series of numerical examples also confirms the effectiveness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saturated orthogonal array</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uniform design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Word-length pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wrap-around</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of statistical planning and inference</subfield><subfield code="d">Amsterdam : North-Holland Publ. Co., 1977</subfield><subfield code="g">216, Seite 174-181</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266882307</subfield><subfield code="w">(DE-600)1468074-9</subfield><subfield code="w">(DE-576)09405830X</subfield><subfield code="x">0378-3758</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:216</subfield><subfield code="g">pages:174-181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="j">Mathematische Statistik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">216</subfield><subfield code="h">174-181</subfield></datafield></record></collection>
|
author |
Chen, E |
spellingShingle |
Chen, E ddc 510 bkl 31.73 misc Saturated orthogonal array misc Uniform design misc Word-length pattern misc Wrap-around Uniformity of saturated orthogonal arrays |
authorStr |
Chen, E |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266882307 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 000 - Computer science, information & general works 310 - Collections of general statistics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0378-3758 |
topic_title |
510 000 310 DE-600 31.73 bkl Uniformity of saturated orthogonal arrays Saturated orthogonal array Uniform design Word-length pattern Wrap-around |
topic |
ddc 510 bkl 31.73 misc Saturated orthogonal array misc Uniform design misc Word-length pattern misc Wrap-around |
topic_unstemmed |
ddc 510 bkl 31.73 misc Saturated orthogonal array misc Uniform design misc Word-length pattern misc Wrap-around |
topic_browse |
ddc 510 bkl 31.73 misc Saturated orthogonal array misc Uniform design misc Word-length pattern misc Wrap-around |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of statistical planning and inference |
hierarchy_parent_id |
266882307 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems 310 - Statistics |
hierarchy_top_title |
Journal of statistical planning and inference |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266882307 (DE-600)1468074-9 (DE-576)09405830X |
title |
Uniformity of saturated orthogonal arrays |
ctrlnum |
(DE-627)ELV006409741 (ELSEVIER)S0378-3758(21)00067-7 |
title_full |
Uniformity of saturated orthogonal arrays |
author_sort |
Chen, E |
journal |
Journal of statistical planning and inference |
journalStr |
Journal of statistical planning and inference |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
174 |
author_browse |
Chen, E Tang, Yu |
container_volume |
216 |
class |
510 000 310 DE-600 31.73 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, E |
doi_str_mv |
10.1016/j.jspi.2021.06.002 |
dewey-full |
510 000 310 |
author2-role |
verfasserin |
title_sort |
uniformity of saturated orthogonal arrays |
title_auth |
Uniformity of saturated orthogonal arrays |
abstract |
Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that permuting levels of orthogonal arrays will alter their statistical inference abilities. Criteria have been recommended for evaluating the different performance of orthogonal arrays. In this paper, a revised method is proposed to construct saturated orthogonal arrays when the level of the factors is an odd prime and properties of the related wrap-around L 2 -discrepancy will be investigated. Theoretical result shows that the wrap-around L 2 -discrepancies of the saturated orthogonal arrays constructed using the revised method are less than those of the original ones, and asymptotically attain the lower bounds. A series of numerical examples also confirms the effectiveness of the proposed method. |
abstractGer |
Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that permuting levels of orthogonal arrays will alter their statistical inference abilities. Criteria have been recommended for evaluating the different performance of orthogonal arrays. In this paper, a revised method is proposed to construct saturated orthogonal arrays when the level of the factors is an odd prime and properties of the related wrap-around L 2 -discrepancy will be investigated. Theoretical result shows that the wrap-around L 2 -discrepancies of the saturated orthogonal arrays constructed using the revised method are less than those of the original ones, and asymptotically attain the lower bounds. A series of numerical examples also confirms the effectiveness of the proposed method. |
abstract_unstemmed |
Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that permuting levels of orthogonal arrays will alter their statistical inference abilities. Criteria have been recommended for evaluating the different performance of orthogonal arrays. In this paper, a revised method is proposed to construct saturated orthogonal arrays when the level of the factors is an odd prime and properties of the related wrap-around L 2 -discrepancy will be investigated. Theoretical result shows that the wrap-around L 2 -discrepancies of the saturated orthogonal arrays constructed using the revised method are less than those of the original ones, and asymptotically attain the lower bounds. A series of numerical examples also confirms the effectiveness of the proposed method. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Uniformity of saturated orthogonal arrays |
remote_bool |
true |
author2 |
Tang, Yu |
author2Str |
Tang, Yu |
ppnlink |
266882307 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jspi.2021.06.002 |
up_date |
2024-07-06T21:17:05.204Z |
_version_ |
1803865948376006656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006409741</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524164936.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jspi.2021.06.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006409741</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-3758(21)00067-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="a">310</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, E</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Uniformity of saturated orthogonal arrays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Orthogonal array has been used in various fields, as it possesses attractive combinatorial properties. However, for a long time, combinatorially equivalent orthogonal arrays are thought to be indistinguishable, especially when an ANOVA model is established. Later on, some papers pointed out that permuting levels of orthogonal arrays will alter their statistical inference abilities. Criteria have been recommended for evaluating the different performance of orthogonal arrays. In this paper, a revised method is proposed to construct saturated orthogonal arrays when the level of the factors is an odd prime and properties of the related wrap-around L 2 -discrepancy will be investigated. Theoretical result shows that the wrap-around L 2 -discrepancies of the saturated orthogonal arrays constructed using the revised method are less than those of the original ones, and asymptotically attain the lower bounds. A series of numerical examples also confirms the effectiveness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saturated orthogonal array</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uniform design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Word-length pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wrap-around</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of statistical planning and inference</subfield><subfield code="d">Amsterdam : North-Holland Publ. Co., 1977</subfield><subfield code="g">216, Seite 174-181</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266882307</subfield><subfield code="w">(DE-600)1468074-9</subfield><subfield code="w">(DE-576)09405830X</subfield><subfield code="x">0378-3758</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:216</subfield><subfield code="g">pages:174-181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="j">Mathematische Statistik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">216</subfield><subfield code="h">174-181</subfield></datafield></record></collection>
|
score |
7.4011774 |