Adapting reservoir operation rules to hydrological drought state and environmental flow requirements
Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir opera...
Ausführliche Beschreibung
Autor*in: |
Zolfagharpour, Farshid [verfasserIn] Saghafian, Bahram [verfasserIn] Delavar, Majid [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of hydrology - Amsterdam [u.a.] : Elsevier, 1963, 600 |
---|---|
Übergeordnetes Werk: |
volume:600 |
DOI / URN: |
10.1016/j.jhydrol.2021.126581 |
---|
Katalog-ID: |
ELV006444075 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006444075 | ||
003 | DE-627 | ||
005 | 20230524144351.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jhydrol.2021.126581 |2 doi | |
035 | |a (DE-627)ELV006444075 | ||
035 | |a (ELSEVIER)S0022-1694(21)00628-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 38.85 |2 bkl | ||
100 | 1 | |a Zolfagharpour, Farshid |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adapting reservoir operation rules to hydrological drought state and environmental flow requirements |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir operation/re-operation, a few studies have addressed inflow uncertainty and hydrological drought state to improve the monthly operation performance of an upstream reservoir in coordination with downstream wetland needs. Hence, the study objective is to adopt a linear/nonlinear reservoir operation rule to hydrological drought states and e-flow requirements. So, first, the soil and water assessment (SWAT) model is applied to simulate the natural daily flow regime by eliminating human impacts. Then, using the Tennant e-flow scheme, the intra/inter-annual variability of e-flow and the degree of alteration of the flow are measured. Afterward, using the Standardized Hydrological Drought Index (SHDI), the drought/wet severity and duration are determined. A linear/nonlinear simulation model adopted for the presentation of reservoir policies and the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to determine the optimal monthly operation of the upstream reservoir. The simulated operation policies correspond to each hydrological drought state were evaluated with reliability, resilience, vulnerability, and water-deficit indices. Results indicated that incorporation of hydrological drought state could improve the overall system reliability by 23% over simply enforcing the monthly variable-parameter nonlinear decision rules. Also, the proposed methodology simultaneously maximized the downstream allocated water and e-flow of the terminal wetland. It also implicitly minimized the change in extreme flow metrics that are known to benefit ecosystem diversity. The proposed framework supports reservoir re-operation in regions subject to challenges in supplying water to different sectors while maintaining e-flow during drought periods. | ||
650 | 4 | |a Hydrological drought | |
650 | 4 | |a Natural flow regime | |
650 | 4 | |a Monthly policy | |
650 | 4 | |a Reservoir | |
650 | 4 | |a Environmental flow | |
650 | 4 | |a Zayandeh-Rud | |
700 | 1 | |a Saghafian, Bahram |e verfasserin |0 (orcid)0000-0003-2846-2840 |4 aut | |
700 | 1 | |a Delavar, Majid |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of hydrology |d Amsterdam [u.a.] : Elsevier, 1963 |g 600 |h Online-Ressource |w (DE-627)268761817 |w (DE-600)1473173-3 |w (DE-576)077610628 |x 1879-2707 |7 nnns |
773 | 1 | 8 | |g volume:600 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.85 |j Hydrologie: Allgemeines |
951 | |a AR | ||
952 | |d 600 |
author_variant |
f z fz b s bs m d md |
---|---|
matchkey_str |
article:18792707:2021----::dpigeevioeainuethdooiadogtttadnio |
hierarchy_sort_str |
2021 |
bklnumber |
38.85 |
publishDate |
2021 |
allfields |
10.1016/j.jhydrol.2021.126581 doi (DE-627)ELV006444075 (ELSEVIER)S0022-1694(21)00628-4 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Zolfagharpour, Farshid verfasserin aut Adapting reservoir operation rules to hydrological drought state and environmental flow requirements 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir operation/re-operation, a few studies have addressed inflow uncertainty and hydrological drought state to improve the monthly operation performance of an upstream reservoir in coordination with downstream wetland needs. Hence, the study objective is to adopt a linear/nonlinear reservoir operation rule to hydrological drought states and e-flow requirements. So, first, the soil and water assessment (SWAT) model is applied to simulate the natural daily flow regime by eliminating human impacts. Then, using the Tennant e-flow scheme, the intra/inter-annual variability of e-flow and the degree of alteration of the flow are measured. Afterward, using the Standardized Hydrological Drought Index (SHDI), the drought/wet severity and duration are determined. A linear/nonlinear simulation model adopted for the presentation of reservoir policies and the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to determine the optimal monthly operation of the upstream reservoir. The simulated operation policies correspond to each hydrological drought state were evaluated with reliability, resilience, vulnerability, and water-deficit indices. Results indicated that incorporation of hydrological drought state could improve the overall system reliability by 23% over simply enforcing the monthly variable-parameter nonlinear decision rules. Also, the proposed methodology simultaneously maximized the downstream allocated water and e-flow of the terminal wetland. It also implicitly minimized the change in extreme flow metrics that are known to benefit ecosystem diversity. The proposed framework supports reservoir re-operation in regions subject to challenges in supplying water to different sectors while maintaining e-flow during drought periods. Hydrological drought Natural flow regime Monthly policy Reservoir Environmental flow Zayandeh-Rud Saghafian, Bahram verfasserin (orcid)0000-0003-2846-2840 aut Delavar, Majid verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 600 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:600 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 600 |
spelling |
10.1016/j.jhydrol.2021.126581 doi (DE-627)ELV006444075 (ELSEVIER)S0022-1694(21)00628-4 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Zolfagharpour, Farshid verfasserin aut Adapting reservoir operation rules to hydrological drought state and environmental flow requirements 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir operation/re-operation, a few studies have addressed inflow uncertainty and hydrological drought state to improve the monthly operation performance of an upstream reservoir in coordination with downstream wetland needs. Hence, the study objective is to adopt a linear/nonlinear reservoir operation rule to hydrological drought states and e-flow requirements. So, first, the soil and water assessment (SWAT) model is applied to simulate the natural daily flow regime by eliminating human impacts. Then, using the Tennant e-flow scheme, the intra/inter-annual variability of e-flow and the degree of alteration of the flow are measured. Afterward, using the Standardized Hydrological Drought Index (SHDI), the drought/wet severity and duration are determined. A linear/nonlinear simulation model adopted for the presentation of reservoir policies and the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to determine the optimal monthly operation of the upstream reservoir. The simulated operation policies correspond to each hydrological drought state were evaluated with reliability, resilience, vulnerability, and water-deficit indices. Results indicated that incorporation of hydrological drought state could improve the overall system reliability by 23% over simply enforcing the monthly variable-parameter nonlinear decision rules. Also, the proposed methodology simultaneously maximized the downstream allocated water and e-flow of the terminal wetland. It also implicitly minimized the change in extreme flow metrics that are known to benefit ecosystem diversity. The proposed framework supports reservoir re-operation in regions subject to challenges in supplying water to different sectors while maintaining e-flow during drought periods. Hydrological drought Natural flow regime Monthly policy Reservoir Environmental flow Zayandeh-Rud Saghafian, Bahram verfasserin (orcid)0000-0003-2846-2840 aut Delavar, Majid verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 600 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:600 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 600 |
allfields_unstemmed |
10.1016/j.jhydrol.2021.126581 doi (DE-627)ELV006444075 (ELSEVIER)S0022-1694(21)00628-4 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Zolfagharpour, Farshid verfasserin aut Adapting reservoir operation rules to hydrological drought state and environmental flow requirements 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir operation/re-operation, a few studies have addressed inflow uncertainty and hydrological drought state to improve the monthly operation performance of an upstream reservoir in coordination with downstream wetland needs. Hence, the study objective is to adopt a linear/nonlinear reservoir operation rule to hydrological drought states and e-flow requirements. So, first, the soil and water assessment (SWAT) model is applied to simulate the natural daily flow regime by eliminating human impacts. Then, using the Tennant e-flow scheme, the intra/inter-annual variability of e-flow and the degree of alteration of the flow are measured. Afterward, using the Standardized Hydrological Drought Index (SHDI), the drought/wet severity and duration are determined. A linear/nonlinear simulation model adopted for the presentation of reservoir policies and the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to determine the optimal monthly operation of the upstream reservoir. The simulated operation policies correspond to each hydrological drought state were evaluated with reliability, resilience, vulnerability, and water-deficit indices. Results indicated that incorporation of hydrological drought state could improve the overall system reliability by 23% over simply enforcing the monthly variable-parameter nonlinear decision rules. Also, the proposed methodology simultaneously maximized the downstream allocated water and e-flow of the terminal wetland. It also implicitly minimized the change in extreme flow metrics that are known to benefit ecosystem diversity. The proposed framework supports reservoir re-operation in regions subject to challenges in supplying water to different sectors while maintaining e-flow during drought periods. Hydrological drought Natural flow regime Monthly policy Reservoir Environmental flow Zayandeh-Rud Saghafian, Bahram verfasserin (orcid)0000-0003-2846-2840 aut Delavar, Majid verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 600 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:600 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 600 |
allfieldsGer |
10.1016/j.jhydrol.2021.126581 doi (DE-627)ELV006444075 (ELSEVIER)S0022-1694(21)00628-4 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Zolfagharpour, Farshid verfasserin aut Adapting reservoir operation rules to hydrological drought state and environmental flow requirements 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir operation/re-operation, a few studies have addressed inflow uncertainty and hydrological drought state to improve the monthly operation performance of an upstream reservoir in coordination with downstream wetland needs. Hence, the study objective is to adopt a linear/nonlinear reservoir operation rule to hydrological drought states and e-flow requirements. So, first, the soil and water assessment (SWAT) model is applied to simulate the natural daily flow regime by eliminating human impacts. Then, using the Tennant e-flow scheme, the intra/inter-annual variability of e-flow and the degree of alteration of the flow are measured. Afterward, using the Standardized Hydrological Drought Index (SHDI), the drought/wet severity and duration are determined. A linear/nonlinear simulation model adopted for the presentation of reservoir policies and the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to determine the optimal monthly operation of the upstream reservoir. The simulated operation policies correspond to each hydrological drought state were evaluated with reliability, resilience, vulnerability, and water-deficit indices. Results indicated that incorporation of hydrological drought state could improve the overall system reliability by 23% over simply enforcing the monthly variable-parameter nonlinear decision rules. Also, the proposed methodology simultaneously maximized the downstream allocated water and e-flow of the terminal wetland. It also implicitly minimized the change in extreme flow metrics that are known to benefit ecosystem diversity. The proposed framework supports reservoir re-operation in regions subject to challenges in supplying water to different sectors while maintaining e-flow during drought periods. Hydrological drought Natural flow regime Monthly policy Reservoir Environmental flow Zayandeh-Rud Saghafian, Bahram verfasserin (orcid)0000-0003-2846-2840 aut Delavar, Majid verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 600 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:600 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 600 |
allfieldsSound |
10.1016/j.jhydrol.2021.126581 doi (DE-627)ELV006444075 (ELSEVIER)S0022-1694(21)00628-4 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Zolfagharpour, Farshid verfasserin aut Adapting reservoir operation rules to hydrological drought state and environmental flow requirements 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir operation/re-operation, a few studies have addressed inflow uncertainty and hydrological drought state to improve the monthly operation performance of an upstream reservoir in coordination with downstream wetland needs. Hence, the study objective is to adopt a linear/nonlinear reservoir operation rule to hydrological drought states and e-flow requirements. So, first, the soil and water assessment (SWAT) model is applied to simulate the natural daily flow regime by eliminating human impacts. Then, using the Tennant e-flow scheme, the intra/inter-annual variability of e-flow and the degree of alteration of the flow are measured. Afterward, using the Standardized Hydrological Drought Index (SHDI), the drought/wet severity and duration are determined. A linear/nonlinear simulation model adopted for the presentation of reservoir policies and the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to determine the optimal monthly operation of the upstream reservoir. The simulated operation policies correspond to each hydrological drought state were evaluated with reliability, resilience, vulnerability, and water-deficit indices. Results indicated that incorporation of hydrological drought state could improve the overall system reliability by 23% over simply enforcing the monthly variable-parameter nonlinear decision rules. Also, the proposed methodology simultaneously maximized the downstream allocated water and e-flow of the terminal wetland. It also implicitly minimized the change in extreme flow metrics that are known to benefit ecosystem diversity. The proposed framework supports reservoir re-operation in regions subject to challenges in supplying water to different sectors while maintaining e-flow during drought periods. Hydrological drought Natural flow regime Monthly policy Reservoir Environmental flow Zayandeh-Rud Saghafian, Bahram verfasserin (orcid)0000-0003-2846-2840 aut Delavar, Majid verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 600 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:600 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 600 |
language |
English |
source |
Enthalten in Journal of hydrology 600 volume:600 |
sourceStr |
Enthalten in Journal of hydrology 600 volume:600 |
format_phy_str_mv |
Article |
bklname |
Hydrologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Hydrological drought Natural flow regime Monthly policy Reservoir Environmental flow Zayandeh-Rud |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Journal of hydrology |
authorswithroles_txt_mv |
Zolfagharpour, Farshid @@aut@@ Saghafian, Bahram @@aut@@ Delavar, Majid @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
268761817 |
dewey-sort |
3690 |
id |
ELV006444075 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006444075</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2021.126581</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006444075</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(21)00628-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zolfagharpour, Farshid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adapting reservoir operation rules to hydrological drought state and environmental flow requirements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir operation/re-operation, a few studies have addressed inflow uncertainty and hydrological drought state to improve the monthly operation performance of an upstream reservoir in coordination with downstream wetland needs. Hence, the study objective is to adopt a linear/nonlinear reservoir operation rule to hydrological drought states and e-flow requirements. So, first, the soil and water assessment (SWAT) model is applied to simulate the natural daily flow regime by eliminating human impacts. Then, using the Tennant e-flow scheme, the intra/inter-annual variability of e-flow and the degree of alteration of the flow are measured. Afterward, using the Standardized Hydrological Drought Index (SHDI), the drought/wet severity and duration are determined. A linear/nonlinear simulation model adopted for the presentation of reservoir policies and the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to determine the optimal monthly operation of the upstream reservoir. The simulated operation policies correspond to each hydrological drought state were evaluated with reliability, resilience, vulnerability, and water-deficit indices. Results indicated that incorporation of hydrological drought state could improve the overall system reliability by 23% over simply enforcing the monthly variable-parameter nonlinear decision rules. Also, the proposed methodology simultaneously maximized the downstream allocated water and e-flow of the terminal wetland. It also implicitly minimized the change in extreme flow metrics that are known to benefit ecosystem diversity. The proposed framework supports reservoir re-operation in regions subject to challenges in supplying water to different sectors while maintaining e-flow during drought periods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrological drought</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural flow regime</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monthly policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reservoir</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zayandeh-Rud</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saghafian, Bahram</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2846-2840</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delavar, Majid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">600</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:600</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">600</subfield></datafield></record></collection>
|
author |
Zolfagharpour, Farshid |
spellingShingle |
Zolfagharpour, Farshid ddc 690 bkl 38.85 misc Hydrological drought misc Natural flow regime misc Monthly policy misc Reservoir misc Environmental flow misc Zayandeh-Rud Adapting reservoir operation rules to hydrological drought state and environmental flow requirements |
authorStr |
Zolfagharpour, Farshid |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268761817 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2707 |
topic_title |
690 DE-600 38.85 bkl Adapting reservoir operation rules to hydrological drought state and environmental flow requirements Hydrological drought Natural flow regime Monthly policy Reservoir Environmental flow Zayandeh-Rud |
topic |
ddc 690 bkl 38.85 misc Hydrological drought misc Natural flow regime misc Monthly policy misc Reservoir misc Environmental flow misc Zayandeh-Rud |
topic_unstemmed |
ddc 690 bkl 38.85 misc Hydrological drought misc Natural flow regime misc Monthly policy misc Reservoir misc Environmental flow misc Zayandeh-Rud |
topic_browse |
ddc 690 bkl 38.85 misc Hydrological drought misc Natural flow regime misc Monthly policy misc Reservoir misc Environmental flow misc Zayandeh-Rud |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of hydrology |
hierarchy_parent_id |
268761817 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Journal of hydrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 |
title |
Adapting reservoir operation rules to hydrological drought state and environmental flow requirements |
ctrlnum |
(DE-627)ELV006444075 (ELSEVIER)S0022-1694(21)00628-4 |
title_full |
Adapting reservoir operation rules to hydrological drought state and environmental flow requirements |
author_sort |
Zolfagharpour, Farshid |
journal |
Journal of hydrology |
journalStr |
Journal of hydrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Zolfagharpour, Farshid Saghafian, Bahram Delavar, Majid |
container_volume |
600 |
class |
690 DE-600 38.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zolfagharpour, Farshid |
doi_str_mv |
10.1016/j.jhydrol.2021.126581 |
normlink |
(ORCID)0000-0003-2846-2840 |
normlink_prefix_str_mv |
(orcid)0000-0003-2846-2840 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
adapting reservoir operation rules to hydrological drought state and environmental flow requirements |
title_auth |
Adapting reservoir operation rules to hydrological drought state and environmental flow requirements |
abstract |
Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir operation/re-operation, a few studies have addressed inflow uncertainty and hydrological drought state to improve the monthly operation performance of an upstream reservoir in coordination with downstream wetland needs. Hence, the study objective is to adopt a linear/nonlinear reservoir operation rule to hydrological drought states and e-flow requirements. So, first, the soil and water assessment (SWAT) model is applied to simulate the natural daily flow regime by eliminating human impacts. Then, using the Tennant e-flow scheme, the intra/inter-annual variability of e-flow and the degree of alteration of the flow are measured. Afterward, using the Standardized Hydrological Drought Index (SHDI), the drought/wet severity and duration are determined. A linear/nonlinear simulation model adopted for the presentation of reservoir policies and the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to determine the optimal monthly operation of the upstream reservoir. The simulated operation policies correspond to each hydrological drought state were evaluated with reliability, resilience, vulnerability, and water-deficit indices. Results indicated that incorporation of hydrological drought state could improve the overall system reliability by 23% over simply enforcing the monthly variable-parameter nonlinear decision rules. Also, the proposed methodology simultaneously maximized the downstream allocated water and e-flow of the terminal wetland. It also implicitly minimized the change in extreme flow metrics that are known to benefit ecosystem diversity. The proposed framework supports reservoir re-operation in regions subject to challenges in supplying water to different sectors while maintaining e-flow during drought periods. |
abstractGer |
Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir operation/re-operation, a few studies have addressed inflow uncertainty and hydrological drought state to improve the monthly operation performance of an upstream reservoir in coordination with downstream wetland needs. Hence, the study objective is to adopt a linear/nonlinear reservoir operation rule to hydrological drought states and e-flow requirements. So, first, the soil and water assessment (SWAT) model is applied to simulate the natural daily flow regime by eliminating human impacts. Then, using the Tennant e-flow scheme, the intra/inter-annual variability of e-flow and the degree of alteration of the flow are measured. Afterward, using the Standardized Hydrological Drought Index (SHDI), the drought/wet severity and duration are determined. A linear/nonlinear simulation model adopted for the presentation of reservoir policies and the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to determine the optimal monthly operation of the upstream reservoir. The simulated operation policies correspond to each hydrological drought state were evaluated with reliability, resilience, vulnerability, and water-deficit indices. Results indicated that incorporation of hydrological drought state could improve the overall system reliability by 23% over simply enforcing the monthly variable-parameter nonlinear decision rules. Also, the proposed methodology simultaneously maximized the downstream allocated water and e-flow of the terminal wetland. It also implicitly minimized the change in extreme flow metrics that are known to benefit ecosystem diversity. The proposed framework supports reservoir re-operation in regions subject to challenges in supplying water to different sectors while maintaining e-flow during drought periods. |
abstract_unstemmed |
Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir operation/re-operation, a few studies have addressed inflow uncertainty and hydrological drought state to improve the monthly operation performance of an upstream reservoir in coordination with downstream wetland needs. Hence, the study objective is to adopt a linear/nonlinear reservoir operation rule to hydrological drought states and e-flow requirements. So, first, the soil and water assessment (SWAT) model is applied to simulate the natural daily flow regime by eliminating human impacts. Then, using the Tennant e-flow scheme, the intra/inter-annual variability of e-flow and the degree of alteration of the flow are measured. Afterward, using the Standardized Hydrological Drought Index (SHDI), the drought/wet severity and duration are determined. A linear/nonlinear simulation model adopted for the presentation of reservoir policies and the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to determine the optimal monthly operation of the upstream reservoir. The simulated operation policies correspond to each hydrological drought state were evaluated with reliability, resilience, vulnerability, and water-deficit indices. Results indicated that incorporation of hydrological drought state could improve the overall system reliability by 23% over simply enforcing the monthly variable-parameter nonlinear decision rules. Also, the proposed methodology simultaneously maximized the downstream allocated water and e-flow of the terminal wetland. It also implicitly minimized the change in extreme flow metrics that are known to benefit ecosystem diversity. The proposed framework supports reservoir re-operation in regions subject to challenges in supplying water to different sectors while maintaining e-flow during drought periods. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Adapting reservoir operation rules to hydrological drought state and environmental flow requirements |
remote_bool |
true |
author2 |
Saghafian, Bahram Delavar, Majid |
author2Str |
Saghafian, Bahram Delavar, Majid |
ppnlink |
268761817 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jhydrol.2021.126581 |
up_date |
2024-07-06T21:23:50.982Z |
_version_ |
1803866373862981632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006444075</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2021.126581</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006444075</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(21)00628-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zolfagharpour, Farshid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adapting reservoir operation rules to hydrological drought state and environmental flow requirements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Negligence of environmental flow (e-flow) has severe adverse impacts on wetlands. Additionally, hydrological droughts, compounded by mismanagement of available water resources and anthropogenic activities, lead to water shortage and degrade wetland ecosystem. However, in dealing with reservoir operation/re-operation, a few studies have addressed inflow uncertainty and hydrological drought state to improve the monthly operation performance of an upstream reservoir in coordination with downstream wetland needs. Hence, the study objective is to adopt a linear/nonlinear reservoir operation rule to hydrological drought states and e-flow requirements. So, first, the soil and water assessment (SWAT) model is applied to simulate the natural daily flow regime by eliminating human impacts. Then, using the Tennant e-flow scheme, the intra/inter-annual variability of e-flow and the degree of alteration of the flow are measured. Afterward, using the Standardized Hydrological Drought Index (SHDI), the drought/wet severity and duration are determined. A linear/nonlinear simulation model adopted for the presentation of reservoir policies and the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to determine the optimal monthly operation of the upstream reservoir. The simulated operation policies correspond to each hydrological drought state were evaluated with reliability, resilience, vulnerability, and water-deficit indices. Results indicated that incorporation of hydrological drought state could improve the overall system reliability by 23% over simply enforcing the monthly variable-parameter nonlinear decision rules. Also, the proposed methodology simultaneously maximized the downstream allocated water and e-flow of the terminal wetland. It also implicitly minimized the change in extreme flow metrics that are known to benefit ecosystem diversity. The proposed framework supports reservoir re-operation in regions subject to challenges in supplying water to different sectors while maintaining e-flow during drought periods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrological drought</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural flow regime</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monthly policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reservoir</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zayandeh-Rud</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saghafian, Bahram</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2846-2840</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delavar, Majid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">600</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:600</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">600</subfield></datafield></record></collection>
|
score |
7.4021845 |