An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau
The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accurac...
Ausführliche Beschreibung
Autor*in: |
Zeng, Biao [verfasserIn] Zhang, Fuguang [verfasserIn] Wei, Lanlan [verfasserIn] Zhang, Xiaomiao [verfasserIn] Yang, Taibao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Catena - New York, NY [u.a.] : Elsevier, 1973, 206 |
---|---|
Übergeordnetes Werk: |
volume:206 |
DOI / URN: |
10.1016/j.catena.2021.105479 |
---|
Katalog-ID: |
ELV006495141 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006495141 | ||
003 | DE-627 | ||
005 | 20230524130358.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.catena.2021.105479 |2 doi | |
035 | |a (DE-627)ELV006495141 | ||
035 | |a (ELSEVIER)S0341-8162(21)00337-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 910 |a 550 |q DE-600 |
084 | |a 38.60 |2 bkl | ||
084 | |a 38.45 |2 bkl | ||
100 | 1 | |a Zeng, Biao |e verfasserin |4 aut | |
245 | 1 | 0 | |a An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accuracy of net primary production (NPP) simulation. Taking the eastern Qilian Mountains as a case, we revised the IBIS model by integrating terrain influences, water distribution processes, and vegetation and soil characteristics. Terrain effects on solar radiation and precipitation intensity were executed using a hill-shade value and a terrain correction factor, respectively. Then, the re-infiltration process of surface runoff within a pixel was integrated into water distribution sub-module. In the revised model (IBISi), soil hydraulic conductivity was dynamically updated based on the saturated hydraulic conductivity of soil texture and soil-pore water content, instead of a constant value. Inverse migration of soil water due to surface evaporation was also integrated to simulate its impacts on soil moisture. Considering spatial heterogeneity of soil thickness in alpine mountains, the IBISi adopts a thickness-based soil layer structure instead of a 4-meter one. The leaf area index base in herbaceous areas was optimized by a germination coefficient. A measured CO2 concentration series was utilized as an alternative to the calculated values by model prediction. Meanwhile, the key parameters of alpine mountain ecosystems were set based on field survey from the case study area. The NPP values simulated by the IBISi model were compared with the ones measured by remote sensing in areas with relatively less human activities. The results indicated that the IBISi model had a high reliability and accuracy. Thus, it is a good option for simulating NPP dynamics in alpine mountain ecosystems under climate change, and could also provide a scientific basis for assessing human activity impacts at the regional scale. | ||
650 | 4 | |a IBIS | |
650 | 4 | |a NPP dynamics | |
650 | 4 | |a Alpine mountain ecosystem | |
650 | 4 | |a The eastern Qilian Mountains | |
700 | 1 | |a Zhang, Fuguang |e verfasserin |4 aut | |
700 | 1 | |a Wei, Lanlan |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Xiaomiao |e verfasserin |4 aut | |
700 | 1 | |a Yang, Taibao |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Catena |d New York, NY [u.a.] : Elsevier, 1973 |g 206 |h Online-Ressource |w (DE-627)30272432X |w (DE-600)1492500-X |w (DE-576)081952821 |x 0008-7769 |7 nnns |
773 | 1 | 8 | |g volume:206 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.60 |j Bodenkunde: Allgemeines |x Geowissenschaften |
936 | b | k | |a 38.45 |j Geomorphologie |
951 | |a AR | ||
952 | |d 206 |
author_variant |
b z bz f z fz l w lw x z xz t y ty |
---|---|
matchkey_str |
article:00087769:2021----::nmrvdbsoefriuaigpdnmciapnmutieoytmaaetditeatrqlam |
hierarchy_sort_str |
2021 |
bklnumber |
38.60 38.45 |
publishDate |
2021 |
allfields |
10.1016/j.catena.2021.105479 doi (DE-627)ELV006495141 (ELSEVIER)S0341-8162(21)00337-4 DE-627 ger DE-627 rda eng 910 550 DE-600 38.60 bkl 38.45 bkl Zeng, Biao verfasserin aut An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accuracy of net primary production (NPP) simulation. Taking the eastern Qilian Mountains as a case, we revised the IBIS model by integrating terrain influences, water distribution processes, and vegetation and soil characteristics. Terrain effects on solar radiation and precipitation intensity were executed using a hill-shade value and a terrain correction factor, respectively. Then, the re-infiltration process of surface runoff within a pixel was integrated into water distribution sub-module. In the revised model (IBISi), soil hydraulic conductivity was dynamically updated based on the saturated hydraulic conductivity of soil texture and soil-pore water content, instead of a constant value. Inverse migration of soil water due to surface evaporation was also integrated to simulate its impacts on soil moisture. Considering spatial heterogeneity of soil thickness in alpine mountains, the IBISi adopts a thickness-based soil layer structure instead of a 4-meter one. The leaf area index base in herbaceous areas was optimized by a germination coefficient. A measured CO2 concentration series was utilized as an alternative to the calculated values by model prediction. Meanwhile, the key parameters of alpine mountain ecosystems were set based on field survey from the case study area. The NPP values simulated by the IBISi model were compared with the ones measured by remote sensing in areas with relatively less human activities. The results indicated that the IBISi model had a high reliability and accuracy. Thus, it is a good option for simulating NPP dynamics in alpine mountain ecosystems under climate change, and could also provide a scientific basis for assessing human activity impacts at the regional scale. IBIS NPP dynamics Alpine mountain ecosystem The eastern Qilian Mountains Zhang, Fuguang verfasserin aut Wei, Lanlan verfasserin aut Zhang, Xiaomiao verfasserin aut Yang, Taibao verfasserin aut Enthalten in Catena New York, NY [u.a.] : Elsevier, 1973 206 Online-Ressource (DE-627)30272432X (DE-600)1492500-X (DE-576)081952821 0008-7769 nnns volume:206 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.60 Bodenkunde: Allgemeines Geowissenschaften 38.45 Geomorphologie AR 206 |
spelling |
10.1016/j.catena.2021.105479 doi (DE-627)ELV006495141 (ELSEVIER)S0341-8162(21)00337-4 DE-627 ger DE-627 rda eng 910 550 DE-600 38.60 bkl 38.45 bkl Zeng, Biao verfasserin aut An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accuracy of net primary production (NPP) simulation. Taking the eastern Qilian Mountains as a case, we revised the IBIS model by integrating terrain influences, water distribution processes, and vegetation and soil characteristics. Terrain effects on solar radiation and precipitation intensity were executed using a hill-shade value and a terrain correction factor, respectively. Then, the re-infiltration process of surface runoff within a pixel was integrated into water distribution sub-module. In the revised model (IBISi), soil hydraulic conductivity was dynamically updated based on the saturated hydraulic conductivity of soil texture and soil-pore water content, instead of a constant value. Inverse migration of soil water due to surface evaporation was also integrated to simulate its impacts on soil moisture. Considering spatial heterogeneity of soil thickness in alpine mountains, the IBISi adopts a thickness-based soil layer structure instead of a 4-meter one. The leaf area index base in herbaceous areas was optimized by a germination coefficient. A measured CO2 concentration series was utilized as an alternative to the calculated values by model prediction. Meanwhile, the key parameters of alpine mountain ecosystems were set based on field survey from the case study area. The NPP values simulated by the IBISi model were compared with the ones measured by remote sensing in areas with relatively less human activities. The results indicated that the IBISi model had a high reliability and accuracy. Thus, it is a good option for simulating NPP dynamics in alpine mountain ecosystems under climate change, and could also provide a scientific basis for assessing human activity impacts at the regional scale. IBIS NPP dynamics Alpine mountain ecosystem The eastern Qilian Mountains Zhang, Fuguang verfasserin aut Wei, Lanlan verfasserin aut Zhang, Xiaomiao verfasserin aut Yang, Taibao verfasserin aut Enthalten in Catena New York, NY [u.a.] : Elsevier, 1973 206 Online-Ressource (DE-627)30272432X (DE-600)1492500-X (DE-576)081952821 0008-7769 nnns volume:206 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.60 Bodenkunde: Allgemeines Geowissenschaften 38.45 Geomorphologie AR 206 |
allfields_unstemmed |
10.1016/j.catena.2021.105479 doi (DE-627)ELV006495141 (ELSEVIER)S0341-8162(21)00337-4 DE-627 ger DE-627 rda eng 910 550 DE-600 38.60 bkl 38.45 bkl Zeng, Biao verfasserin aut An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accuracy of net primary production (NPP) simulation. Taking the eastern Qilian Mountains as a case, we revised the IBIS model by integrating terrain influences, water distribution processes, and vegetation and soil characteristics. Terrain effects on solar radiation and precipitation intensity were executed using a hill-shade value and a terrain correction factor, respectively. Then, the re-infiltration process of surface runoff within a pixel was integrated into water distribution sub-module. In the revised model (IBISi), soil hydraulic conductivity was dynamically updated based on the saturated hydraulic conductivity of soil texture and soil-pore water content, instead of a constant value. Inverse migration of soil water due to surface evaporation was also integrated to simulate its impacts on soil moisture. Considering spatial heterogeneity of soil thickness in alpine mountains, the IBISi adopts a thickness-based soil layer structure instead of a 4-meter one. The leaf area index base in herbaceous areas was optimized by a germination coefficient. A measured CO2 concentration series was utilized as an alternative to the calculated values by model prediction. Meanwhile, the key parameters of alpine mountain ecosystems were set based on field survey from the case study area. The NPP values simulated by the IBISi model were compared with the ones measured by remote sensing in areas with relatively less human activities. The results indicated that the IBISi model had a high reliability and accuracy. Thus, it is a good option for simulating NPP dynamics in alpine mountain ecosystems under climate change, and could also provide a scientific basis for assessing human activity impacts at the regional scale. IBIS NPP dynamics Alpine mountain ecosystem The eastern Qilian Mountains Zhang, Fuguang verfasserin aut Wei, Lanlan verfasserin aut Zhang, Xiaomiao verfasserin aut Yang, Taibao verfasserin aut Enthalten in Catena New York, NY [u.a.] : Elsevier, 1973 206 Online-Ressource (DE-627)30272432X (DE-600)1492500-X (DE-576)081952821 0008-7769 nnns volume:206 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.60 Bodenkunde: Allgemeines Geowissenschaften 38.45 Geomorphologie AR 206 |
allfieldsGer |
10.1016/j.catena.2021.105479 doi (DE-627)ELV006495141 (ELSEVIER)S0341-8162(21)00337-4 DE-627 ger DE-627 rda eng 910 550 DE-600 38.60 bkl 38.45 bkl Zeng, Biao verfasserin aut An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accuracy of net primary production (NPP) simulation. Taking the eastern Qilian Mountains as a case, we revised the IBIS model by integrating terrain influences, water distribution processes, and vegetation and soil characteristics. Terrain effects on solar radiation and precipitation intensity were executed using a hill-shade value and a terrain correction factor, respectively. Then, the re-infiltration process of surface runoff within a pixel was integrated into water distribution sub-module. In the revised model (IBISi), soil hydraulic conductivity was dynamically updated based on the saturated hydraulic conductivity of soil texture and soil-pore water content, instead of a constant value. Inverse migration of soil water due to surface evaporation was also integrated to simulate its impacts on soil moisture. Considering spatial heterogeneity of soil thickness in alpine mountains, the IBISi adopts a thickness-based soil layer structure instead of a 4-meter one. The leaf area index base in herbaceous areas was optimized by a germination coefficient. A measured CO2 concentration series was utilized as an alternative to the calculated values by model prediction. Meanwhile, the key parameters of alpine mountain ecosystems were set based on field survey from the case study area. The NPP values simulated by the IBISi model were compared with the ones measured by remote sensing in areas with relatively less human activities. The results indicated that the IBISi model had a high reliability and accuracy. Thus, it is a good option for simulating NPP dynamics in alpine mountain ecosystems under climate change, and could also provide a scientific basis for assessing human activity impacts at the regional scale. IBIS NPP dynamics Alpine mountain ecosystem The eastern Qilian Mountains Zhang, Fuguang verfasserin aut Wei, Lanlan verfasserin aut Zhang, Xiaomiao verfasserin aut Yang, Taibao verfasserin aut Enthalten in Catena New York, NY [u.a.] : Elsevier, 1973 206 Online-Ressource (DE-627)30272432X (DE-600)1492500-X (DE-576)081952821 0008-7769 nnns volume:206 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.60 Bodenkunde: Allgemeines Geowissenschaften 38.45 Geomorphologie AR 206 |
allfieldsSound |
10.1016/j.catena.2021.105479 doi (DE-627)ELV006495141 (ELSEVIER)S0341-8162(21)00337-4 DE-627 ger DE-627 rda eng 910 550 DE-600 38.60 bkl 38.45 bkl Zeng, Biao verfasserin aut An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accuracy of net primary production (NPP) simulation. Taking the eastern Qilian Mountains as a case, we revised the IBIS model by integrating terrain influences, water distribution processes, and vegetation and soil characteristics. Terrain effects on solar radiation and precipitation intensity were executed using a hill-shade value and a terrain correction factor, respectively. Then, the re-infiltration process of surface runoff within a pixel was integrated into water distribution sub-module. In the revised model (IBISi), soil hydraulic conductivity was dynamically updated based on the saturated hydraulic conductivity of soil texture and soil-pore water content, instead of a constant value. Inverse migration of soil water due to surface evaporation was also integrated to simulate its impacts on soil moisture. Considering spatial heterogeneity of soil thickness in alpine mountains, the IBISi adopts a thickness-based soil layer structure instead of a 4-meter one. The leaf area index base in herbaceous areas was optimized by a germination coefficient. A measured CO2 concentration series was utilized as an alternative to the calculated values by model prediction. Meanwhile, the key parameters of alpine mountain ecosystems were set based on field survey from the case study area. The NPP values simulated by the IBISi model were compared with the ones measured by remote sensing in areas with relatively less human activities. The results indicated that the IBISi model had a high reliability and accuracy. Thus, it is a good option for simulating NPP dynamics in alpine mountain ecosystems under climate change, and could also provide a scientific basis for assessing human activity impacts at the regional scale. IBIS NPP dynamics Alpine mountain ecosystem The eastern Qilian Mountains Zhang, Fuguang verfasserin aut Wei, Lanlan verfasserin aut Zhang, Xiaomiao verfasserin aut Yang, Taibao verfasserin aut Enthalten in Catena New York, NY [u.a.] : Elsevier, 1973 206 Online-Ressource (DE-627)30272432X (DE-600)1492500-X (DE-576)081952821 0008-7769 nnns volume:206 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.60 Bodenkunde: Allgemeines Geowissenschaften 38.45 Geomorphologie AR 206 |
language |
English |
source |
Enthalten in Catena 206 volume:206 |
sourceStr |
Enthalten in Catena 206 volume:206 |
format_phy_str_mv |
Article |
bklname |
Bodenkunde: Allgemeines Geomorphologie |
institution |
findex.gbv.de |
topic_facet |
IBIS NPP dynamics Alpine mountain ecosystem The eastern Qilian Mountains |
dewey-raw |
910 |
isfreeaccess_bool |
false |
container_title |
Catena |
authorswithroles_txt_mv |
Zeng, Biao @@aut@@ Zhang, Fuguang @@aut@@ Wei, Lanlan @@aut@@ Zhang, Xiaomiao @@aut@@ Yang, Taibao @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
30272432X |
dewey-sort |
3910 |
id |
ELV006495141 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006495141</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524130358.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.catena.2021.105479</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006495141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0341-8162(21)00337-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">910</subfield><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeng, Biao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accuracy of net primary production (NPP) simulation. Taking the eastern Qilian Mountains as a case, we revised the IBIS model by integrating terrain influences, water distribution processes, and vegetation and soil characteristics. Terrain effects on solar radiation and precipitation intensity were executed using a hill-shade value and a terrain correction factor, respectively. Then, the re-infiltration process of surface runoff within a pixel was integrated into water distribution sub-module. In the revised model (IBISi), soil hydraulic conductivity was dynamically updated based on the saturated hydraulic conductivity of soil texture and soil-pore water content, instead of a constant value. Inverse migration of soil water due to surface evaporation was also integrated to simulate its impacts on soil moisture. Considering spatial heterogeneity of soil thickness in alpine mountains, the IBISi adopts a thickness-based soil layer structure instead of a 4-meter one. The leaf area index base in herbaceous areas was optimized by a germination coefficient. A measured CO2 concentration series was utilized as an alternative to the calculated values by model prediction. Meanwhile, the key parameters of alpine mountain ecosystems were set based on field survey from the case study area. The NPP values simulated by the IBISi model were compared with the ones measured by remote sensing in areas with relatively less human activities. The results indicated that the IBISi model had a high reliability and accuracy. Thus, it is a good option for simulating NPP dynamics in alpine mountain ecosystems under climate change, and could also provide a scientific basis for assessing human activity impacts at the regional scale.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IBIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NPP dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alpine mountain ecosystem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The eastern Qilian Mountains</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Fuguang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Lanlan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaomiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Taibao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Catena</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1973</subfield><subfield code="g">206</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30272432X</subfield><subfield code="w">(DE-600)1492500-X</subfield><subfield code="w">(DE-576)081952821</subfield><subfield code="x">0008-7769</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.60</subfield><subfield code="j">Bodenkunde: Allgemeines</subfield><subfield code="x">Geowissenschaften</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.45</subfield><subfield code="j">Geomorphologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">206</subfield></datafield></record></collection>
|
author |
Zeng, Biao |
spellingShingle |
Zeng, Biao ddc 910 bkl 38.60 bkl 38.45 misc IBIS misc NPP dynamics misc Alpine mountain ecosystem misc The eastern Qilian Mountains An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau |
authorStr |
Zeng, Biao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)30272432X |
format |
electronic Article |
dewey-ones |
910 - Geography & travel 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0008-7769 |
topic_title |
910 550 DE-600 38.60 bkl 38.45 bkl An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau IBIS NPP dynamics Alpine mountain ecosystem The eastern Qilian Mountains |
topic |
ddc 910 bkl 38.60 bkl 38.45 misc IBIS misc NPP dynamics misc Alpine mountain ecosystem misc The eastern Qilian Mountains |
topic_unstemmed |
ddc 910 bkl 38.60 bkl 38.45 misc IBIS misc NPP dynamics misc Alpine mountain ecosystem misc The eastern Qilian Mountains |
topic_browse |
ddc 910 bkl 38.60 bkl 38.45 misc IBIS misc NPP dynamics misc Alpine mountain ecosystem misc The eastern Qilian Mountains |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Catena |
hierarchy_parent_id |
30272432X |
dewey-tens |
910 - Geography & travel 550 - Earth sciences & geology |
hierarchy_top_title |
Catena |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)30272432X (DE-600)1492500-X (DE-576)081952821 |
title |
An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau |
ctrlnum |
(DE-627)ELV006495141 (ELSEVIER)S0341-8162(21)00337-4 |
title_full |
An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau |
author_sort |
Zeng, Biao |
journal |
Catena |
journalStr |
Catena |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
900 - History & geography 500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Zeng, Biao Zhang, Fuguang Wei, Lanlan Zhang, Xiaomiao Yang, Taibao |
container_volume |
206 |
class |
910 550 DE-600 38.60 bkl 38.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zeng, Biao |
doi_str_mv |
10.1016/j.catena.2021.105479 |
dewey-full |
910 550 |
author2-role |
verfasserin |
title_sort |
an improved ibis model for simulating npp dynamics in alpine mountain ecosystems: a case study in the eastern qilian mountains, northeastern tibetan plateau |
title_auth |
An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau |
abstract |
The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accuracy of net primary production (NPP) simulation. Taking the eastern Qilian Mountains as a case, we revised the IBIS model by integrating terrain influences, water distribution processes, and vegetation and soil characteristics. Terrain effects on solar radiation and precipitation intensity were executed using a hill-shade value and a terrain correction factor, respectively. Then, the re-infiltration process of surface runoff within a pixel was integrated into water distribution sub-module. In the revised model (IBISi), soil hydraulic conductivity was dynamically updated based on the saturated hydraulic conductivity of soil texture and soil-pore water content, instead of a constant value. Inverse migration of soil water due to surface evaporation was also integrated to simulate its impacts on soil moisture. Considering spatial heterogeneity of soil thickness in alpine mountains, the IBISi adopts a thickness-based soil layer structure instead of a 4-meter one. The leaf area index base in herbaceous areas was optimized by a germination coefficient. A measured CO2 concentration series was utilized as an alternative to the calculated values by model prediction. Meanwhile, the key parameters of alpine mountain ecosystems were set based on field survey from the case study area. The NPP values simulated by the IBISi model were compared with the ones measured by remote sensing in areas with relatively less human activities. The results indicated that the IBISi model had a high reliability and accuracy. Thus, it is a good option for simulating NPP dynamics in alpine mountain ecosystems under climate change, and could also provide a scientific basis for assessing human activity impacts at the regional scale. |
abstractGer |
The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accuracy of net primary production (NPP) simulation. Taking the eastern Qilian Mountains as a case, we revised the IBIS model by integrating terrain influences, water distribution processes, and vegetation and soil characteristics. Terrain effects on solar radiation and precipitation intensity were executed using a hill-shade value and a terrain correction factor, respectively. Then, the re-infiltration process of surface runoff within a pixel was integrated into water distribution sub-module. In the revised model (IBISi), soil hydraulic conductivity was dynamically updated based on the saturated hydraulic conductivity of soil texture and soil-pore water content, instead of a constant value. Inverse migration of soil water due to surface evaporation was also integrated to simulate its impacts on soil moisture. Considering spatial heterogeneity of soil thickness in alpine mountains, the IBISi adopts a thickness-based soil layer structure instead of a 4-meter one. The leaf area index base in herbaceous areas was optimized by a germination coefficient. A measured CO2 concentration series was utilized as an alternative to the calculated values by model prediction. Meanwhile, the key parameters of alpine mountain ecosystems were set based on field survey from the case study area. The NPP values simulated by the IBISi model were compared with the ones measured by remote sensing in areas with relatively less human activities. The results indicated that the IBISi model had a high reliability and accuracy. Thus, it is a good option for simulating NPP dynamics in alpine mountain ecosystems under climate change, and could also provide a scientific basis for assessing human activity impacts at the regional scale. |
abstract_unstemmed |
The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accuracy of net primary production (NPP) simulation. Taking the eastern Qilian Mountains as a case, we revised the IBIS model by integrating terrain influences, water distribution processes, and vegetation and soil characteristics. Terrain effects on solar radiation and precipitation intensity were executed using a hill-shade value and a terrain correction factor, respectively. Then, the re-infiltration process of surface runoff within a pixel was integrated into water distribution sub-module. In the revised model (IBISi), soil hydraulic conductivity was dynamically updated based on the saturated hydraulic conductivity of soil texture and soil-pore water content, instead of a constant value. Inverse migration of soil water due to surface evaporation was also integrated to simulate its impacts on soil moisture. Considering spatial heterogeneity of soil thickness in alpine mountains, the IBISi adopts a thickness-based soil layer structure instead of a 4-meter one. The leaf area index base in herbaceous areas was optimized by a germination coefficient. A measured CO2 concentration series was utilized as an alternative to the calculated values by model prediction. Meanwhile, the key parameters of alpine mountain ecosystems were set based on field survey from the case study area. The NPP values simulated by the IBISi model were compared with the ones measured by remote sensing in areas with relatively less human activities. The results indicated that the IBISi model had a high reliability and accuracy. Thus, it is a good option for simulating NPP dynamics in alpine mountain ecosystems under climate change, and could also provide a scientific basis for assessing human activity impacts at the regional scale. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau |
remote_bool |
true |
author2 |
Zhang, Fuguang Wei, Lanlan Zhang, Xiaomiao Yang, Taibao |
author2Str |
Zhang, Fuguang Wei, Lanlan Zhang, Xiaomiao Yang, Taibao |
ppnlink |
30272432X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.catena.2021.105479 |
up_date |
2024-07-06T21:34:24.513Z |
_version_ |
1803867038171529216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006495141</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524130358.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.catena.2021.105479</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006495141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0341-8162(21)00337-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">910</subfield><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeng, Biao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An improved IBIS model for simulating NPP dynamics in alpine mountain ecosystems: A case study in the eastern Qilian Mountains, northeastern Tibetan Plateau</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Integrated Biosphere Simulator (IBIS) model is an effective means of simulating potential vegetation dynamics driven by climate change. However, this model neglects certain key processes and the influences of terrain and soil thickness in alpine mountain ecosystems, which leads to a poor accuracy of net primary production (NPP) simulation. Taking the eastern Qilian Mountains as a case, we revised the IBIS model by integrating terrain influences, water distribution processes, and vegetation and soil characteristics. Terrain effects on solar radiation and precipitation intensity were executed using a hill-shade value and a terrain correction factor, respectively. Then, the re-infiltration process of surface runoff within a pixel was integrated into water distribution sub-module. In the revised model (IBISi), soil hydraulic conductivity was dynamically updated based on the saturated hydraulic conductivity of soil texture and soil-pore water content, instead of a constant value. Inverse migration of soil water due to surface evaporation was also integrated to simulate its impacts on soil moisture. Considering spatial heterogeneity of soil thickness in alpine mountains, the IBISi adopts a thickness-based soil layer structure instead of a 4-meter one. The leaf area index base in herbaceous areas was optimized by a germination coefficient. A measured CO2 concentration series was utilized as an alternative to the calculated values by model prediction. Meanwhile, the key parameters of alpine mountain ecosystems were set based on field survey from the case study area. The NPP values simulated by the IBISi model were compared with the ones measured by remote sensing in areas with relatively less human activities. The results indicated that the IBISi model had a high reliability and accuracy. Thus, it is a good option for simulating NPP dynamics in alpine mountain ecosystems under climate change, and could also provide a scientific basis for assessing human activity impacts at the regional scale.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IBIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NPP dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alpine mountain ecosystem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The eastern Qilian Mountains</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Fuguang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Lanlan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaomiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Taibao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Catena</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1973</subfield><subfield code="g">206</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30272432X</subfield><subfield code="w">(DE-600)1492500-X</subfield><subfield code="w">(DE-576)081952821</subfield><subfield code="x">0008-7769</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.60</subfield><subfield code="j">Bodenkunde: Allgemeines</subfield><subfield code="x">Geowissenschaften</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.45</subfield><subfield code="j">Geomorphologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">206</subfield></datafield></record></collection>
|
score |
7.4017286 |