Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa
Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensi...
Ausführliche Beschreibung
Autor*in: |
Alao, Moshood Akanni [verfasserIn] Popoola, Olawale M. [verfasserIn] Ayodele, Temitope Rapheal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Renewable energy - Amsterdam [u.a.] : Elsevier Science, 1991, 178, Seite 162-183 |
---|---|
Übergeordnetes Werk: |
volume:178 ; pages:162-183 |
DOI / URN: |
10.1016/j.renene.2021.06.031 |
---|
Katalog-ID: |
ELV006504167 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006504167 | ||
003 | DE-627 | ||
005 | 20230524155159.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.renene.2021.06.031 |2 doi | |
035 | |a (DE-627)ELV006504167 | ||
035 | |a (ELSEVIER)S0960-1481(21)00897-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Alao, Moshood Akanni |e verfasserin |4 aut | |
245 | 1 | 0 | |a Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg. | ||
650 | 4 | |a Waste-to-Energy | |
650 | 4 | |a Entropy | |
650 | 4 | |a Criteria impact loss | |
650 | 4 | |a Anaerobic digestion | |
650 | 4 | |a Gasification | |
700 | 1 | |a Popoola, Olawale M. |e verfasserin |4 aut | |
700 | 1 | |a Ayodele, Temitope Rapheal |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Renewable energy |d Amsterdam [u.a.] : Elsevier Science, 1991 |g 178, Seite 162-183 |h Online-Ressource |w (DE-627)320412091 |w (DE-600)2001449-1 |w (DE-576)252613937 |x 1879-0682 |7 nnns |
773 | 1 | 8 | |g volume:178 |g pages:162-183 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |
951 | |a AR | ||
952 | |d 178 |h 162-183 |
author_variant |
m a a ma maa o m p om omp t r a tr tra |
---|---|
matchkey_str |
article:18790682:2021----::eetoowseonryehooyodsrbtdeeainsniorwegtdossehdcssu |
hierarchy_sort_str |
2021 |
bklnumber |
52.56 |
publishDate |
2021 |
allfields |
10.1016/j.renene.2021.06.031 doi (DE-627)ELV006504167 (ELSEVIER)S0960-1481(21)00897-1 DE-627 ger DE-627 rda eng 530 620 DE-600 52.56 bkl Alao, Moshood Akanni verfasserin aut Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg. Waste-to-Energy Entropy Criteria impact loss Anaerobic digestion Gasification Popoola, Olawale M. verfasserin aut Ayodele, Temitope Rapheal verfasserin aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 178, Seite 162-183 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:178 pages:162-183 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 178 162-183 |
spelling |
10.1016/j.renene.2021.06.031 doi (DE-627)ELV006504167 (ELSEVIER)S0960-1481(21)00897-1 DE-627 ger DE-627 rda eng 530 620 DE-600 52.56 bkl Alao, Moshood Akanni verfasserin aut Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg. Waste-to-Energy Entropy Criteria impact loss Anaerobic digestion Gasification Popoola, Olawale M. verfasserin aut Ayodele, Temitope Rapheal verfasserin aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 178, Seite 162-183 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:178 pages:162-183 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 178 162-183 |
allfields_unstemmed |
10.1016/j.renene.2021.06.031 doi (DE-627)ELV006504167 (ELSEVIER)S0960-1481(21)00897-1 DE-627 ger DE-627 rda eng 530 620 DE-600 52.56 bkl Alao, Moshood Akanni verfasserin aut Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg. Waste-to-Energy Entropy Criteria impact loss Anaerobic digestion Gasification Popoola, Olawale M. verfasserin aut Ayodele, Temitope Rapheal verfasserin aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 178, Seite 162-183 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:178 pages:162-183 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 178 162-183 |
allfieldsGer |
10.1016/j.renene.2021.06.031 doi (DE-627)ELV006504167 (ELSEVIER)S0960-1481(21)00897-1 DE-627 ger DE-627 rda eng 530 620 DE-600 52.56 bkl Alao, Moshood Akanni verfasserin aut Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg. Waste-to-Energy Entropy Criteria impact loss Anaerobic digestion Gasification Popoola, Olawale M. verfasserin aut Ayodele, Temitope Rapheal verfasserin aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 178, Seite 162-183 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:178 pages:162-183 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 178 162-183 |
allfieldsSound |
10.1016/j.renene.2021.06.031 doi (DE-627)ELV006504167 (ELSEVIER)S0960-1481(21)00897-1 DE-627 ger DE-627 rda eng 530 620 DE-600 52.56 bkl Alao, Moshood Akanni verfasserin aut Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg. Waste-to-Energy Entropy Criteria impact loss Anaerobic digestion Gasification Popoola, Olawale M. verfasserin aut Ayodele, Temitope Rapheal verfasserin aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 178, Seite 162-183 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:178 pages:162-183 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 178 162-183 |
language |
English |
source |
Enthalten in Renewable energy 178, Seite 162-183 volume:178 pages:162-183 |
sourceStr |
Enthalten in Renewable energy 178, Seite 162-183 volume:178 pages:162-183 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Waste-to-Energy Entropy Criteria impact loss Anaerobic digestion Gasification |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Renewable energy |
authorswithroles_txt_mv |
Alao, Moshood Akanni @@aut@@ Popoola, Olawale M. @@aut@@ Ayodele, Temitope Rapheal @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320412091 |
dewey-sort |
3530 |
id |
ELV006504167 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006504167</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155159.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.renene.2021.06.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006504167</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-1481(21)00897-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alao, Moshood Akanni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waste-to-Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Criteria impact loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anaerobic digestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gasification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Popoola, Olawale M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayodele, Temitope Rapheal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Renewable energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">178, Seite 162-183</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412091</subfield><subfield code="w">(DE-600)2001449-1</subfield><subfield code="w">(DE-576)252613937</subfield><subfield code="x">1879-0682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:178</subfield><subfield code="g">pages:162-183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">178</subfield><subfield code="h">162-183</subfield></datafield></record></collection>
|
author |
Alao, Moshood Akanni |
spellingShingle |
Alao, Moshood Akanni ddc 530 bkl 52.56 misc Waste-to-Energy misc Entropy misc Criteria impact loss misc Anaerobic digestion misc Gasification Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa |
authorStr |
Alao, Moshood Akanni |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320412091 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0682 |
topic_title |
530 620 DE-600 52.56 bkl Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa Waste-to-Energy Entropy Criteria impact loss Anaerobic digestion Gasification |
topic |
ddc 530 bkl 52.56 misc Waste-to-Energy misc Entropy misc Criteria impact loss misc Anaerobic digestion misc Gasification |
topic_unstemmed |
ddc 530 bkl 52.56 misc Waste-to-Energy misc Entropy misc Criteria impact loss misc Anaerobic digestion misc Gasification |
topic_browse |
ddc 530 bkl 52.56 misc Waste-to-Energy misc Entropy misc Criteria impact loss misc Anaerobic digestion misc Gasification |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Renewable energy |
hierarchy_parent_id |
320412091 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Renewable energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 |
title |
Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa |
ctrlnum |
(DE-627)ELV006504167 (ELSEVIER)S0960-1481(21)00897-1 |
title_full |
Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa |
author_sort |
Alao, Moshood Akanni |
journal |
Renewable energy |
journalStr |
Renewable energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
162 |
author_browse |
Alao, Moshood Akanni Popoola, Olawale M. Ayodele, Temitope Rapheal |
container_volume |
178 |
class |
530 620 DE-600 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Alao, Moshood Akanni |
doi_str_mv |
10.1016/j.renene.2021.06.031 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
selection of waste-to-energy technology for distributed generation using idocriw-weighted topsis method: a case study of the city of johannesburg, south africa |
title_auth |
Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa |
abstract |
Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg. |
abstractGer |
Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg. |
abstract_unstemmed |
Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa |
remote_bool |
true |
author2 |
Popoola, Olawale M. Ayodele, Temitope Rapheal |
author2Str |
Popoola, Olawale M. Ayodele, Temitope Rapheal |
ppnlink |
320412091 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.renene.2021.06.031 |
up_date |
2024-07-06T21:36:19.359Z |
_version_ |
1803867158595239936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006504167</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155159.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.renene.2021.06.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006504167</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-1481(21)00897-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alao, Moshood Akanni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waste-to-Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Criteria impact loss</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anaerobic digestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gasification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Popoola, Olawale M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayodele, Temitope Rapheal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Renewable energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">178, Seite 162-183</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412091</subfield><subfield code="w">(DE-600)2001449-1</subfield><subfield code="w">(DE-576)252613937</subfield><subfield code="x">1879-0682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:178</subfield><subfield code="g">pages:162-183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">178</subfield><subfield code="h">162-183</subfield></datafield></record></collection>
|
score |
7.4019346 |