Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image
To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN)....
Ausführliche Beschreibung
Autor*in: |
Xie, Weiying [verfasserIn] Zhang, Jiaqing [verfasserIn] Lei, Jie [verfasserIn] Li, Yunsong [verfasserIn] Jia, Xiuping [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Neural networks - Amsterdam : Elsevier, 1988, 142, Seite 375-387 |
---|---|
Übergeordnetes Werk: |
volume:142 ; pages:375-387 |
DOI / URN: |
10.1016/j.neunet.2021.05.029 |
---|
Katalog-ID: |
ELV006517099 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006517099 | ||
003 | DE-627 | ||
005 | 20230524162713.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neunet.2021.05.029 |2 doi | |
035 | |a (DE-627)ELV006517099 | ||
035 | |a (ELSEVIER)S0893-6080(21)00225-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Xie, Weiying |e verfasserin |0 (orcid)0000-0001-8310-024X |4 aut | |
245 | 1 | 0 | |a Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN). The concept of SSL is introduced into hyperspectral feature extraction in an unsupervised fashion with the purpose of background suppression and target saliency. In particular, a novel structure-to-structure selection rule that takes full account of the structure, contrast, and luminance similarity is established to interpret the mapping relationship between the latent spectral feature space and the original spectral band space, to generate the optimal spectral band subset without any prior knowledge. Finally, the comprehensive result is achieved by nonlinearly combining the spatial detection on the fused latent features with the spectral detection on the selected band subset and the corresponding selected target signature. This paper paves a novel self-spectral learning way for hyperspectral target detection and identifies sensitive bands for specific targets in practice. Comparative analyses demonstrate that the proposed SSTD method presents superior detection performance compared with CSCR, ACE, CEM, hCEM, and ECEM. | ||
650 | 4 | |a Spatial–spectral target detection | |
650 | 4 | |a Self-spectral learning | |
650 | 4 | |a Feature extraction | |
650 | 4 | |a Band selection | |
650 | 4 | |a Hyperspectral image (HSI) | |
700 | 1 | |a Zhang, Jiaqing |e verfasserin |4 aut | |
700 | 1 | |a Lei, Jie |e verfasserin |4 aut | |
700 | 1 | |a Li, Yunsong |e verfasserin |4 aut | |
700 | 1 | |a Jia, Xiuping |e verfasserin |0 (orcid)0000-0001-9916-6382 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural networks |d Amsterdam : Elsevier, 1988 |g 142, Seite 375-387 |h Online-Ressource |w (DE-627)302468536 |w (DE-600)1491372-0 |w (DE-576)07971997X |x 1879-2782 |7 nnns |
773 | 1 | 8 | |g volume:142 |g pages:375-387 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |
951 | |a AR | ||
952 | |d 142 |h 375-387 |
author_variant |
w x wx j z jz j l jl y l yl x j xj |
---|---|
matchkey_str |
article:18792782:2021----::efpcrlerigihabsdpcrlptatredtci |
hierarchy_sort_str |
2021 |
bklnumber |
54.72 |
publishDate |
2021 |
allfields |
10.1016/j.neunet.2021.05.029 doi (DE-627)ELV006517099 (ELSEVIER)S0893-6080(21)00225-2 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Xie, Weiying verfasserin (orcid)0000-0001-8310-024X aut Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN). The concept of SSL is introduced into hyperspectral feature extraction in an unsupervised fashion with the purpose of background suppression and target saliency. In particular, a novel structure-to-structure selection rule that takes full account of the structure, contrast, and luminance similarity is established to interpret the mapping relationship between the latent spectral feature space and the original spectral band space, to generate the optimal spectral band subset without any prior knowledge. Finally, the comprehensive result is achieved by nonlinearly combining the spatial detection on the fused latent features with the spectral detection on the selected band subset and the corresponding selected target signature. This paper paves a novel self-spectral learning way for hyperspectral target detection and identifies sensitive bands for specific targets in practice. Comparative analyses demonstrate that the proposed SSTD method presents superior detection performance compared with CSCR, ACE, CEM, hCEM, and ECEM. Spatial–spectral target detection Self-spectral learning Feature extraction Band selection Hyperspectral image (HSI) Zhang, Jiaqing verfasserin aut Lei, Jie verfasserin aut Li, Yunsong verfasserin aut Jia, Xiuping verfasserin (orcid)0000-0001-9916-6382 aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 142, Seite 375-387 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:142 pages:375-387 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 142 375-387 |
spelling |
10.1016/j.neunet.2021.05.029 doi (DE-627)ELV006517099 (ELSEVIER)S0893-6080(21)00225-2 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Xie, Weiying verfasserin (orcid)0000-0001-8310-024X aut Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN). The concept of SSL is introduced into hyperspectral feature extraction in an unsupervised fashion with the purpose of background suppression and target saliency. In particular, a novel structure-to-structure selection rule that takes full account of the structure, contrast, and luminance similarity is established to interpret the mapping relationship between the latent spectral feature space and the original spectral band space, to generate the optimal spectral band subset without any prior knowledge. Finally, the comprehensive result is achieved by nonlinearly combining the spatial detection on the fused latent features with the spectral detection on the selected band subset and the corresponding selected target signature. This paper paves a novel self-spectral learning way for hyperspectral target detection and identifies sensitive bands for specific targets in practice. Comparative analyses demonstrate that the proposed SSTD method presents superior detection performance compared with CSCR, ACE, CEM, hCEM, and ECEM. Spatial–spectral target detection Self-spectral learning Feature extraction Band selection Hyperspectral image (HSI) Zhang, Jiaqing verfasserin aut Lei, Jie verfasserin aut Li, Yunsong verfasserin aut Jia, Xiuping verfasserin (orcid)0000-0001-9916-6382 aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 142, Seite 375-387 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:142 pages:375-387 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 142 375-387 |
allfields_unstemmed |
10.1016/j.neunet.2021.05.029 doi (DE-627)ELV006517099 (ELSEVIER)S0893-6080(21)00225-2 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Xie, Weiying verfasserin (orcid)0000-0001-8310-024X aut Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN). The concept of SSL is introduced into hyperspectral feature extraction in an unsupervised fashion with the purpose of background suppression and target saliency. In particular, a novel structure-to-structure selection rule that takes full account of the structure, contrast, and luminance similarity is established to interpret the mapping relationship between the latent spectral feature space and the original spectral band space, to generate the optimal spectral band subset without any prior knowledge. Finally, the comprehensive result is achieved by nonlinearly combining the spatial detection on the fused latent features with the spectral detection on the selected band subset and the corresponding selected target signature. This paper paves a novel self-spectral learning way for hyperspectral target detection and identifies sensitive bands for specific targets in practice. Comparative analyses demonstrate that the proposed SSTD method presents superior detection performance compared with CSCR, ACE, CEM, hCEM, and ECEM. Spatial–spectral target detection Self-spectral learning Feature extraction Band selection Hyperspectral image (HSI) Zhang, Jiaqing verfasserin aut Lei, Jie verfasserin aut Li, Yunsong verfasserin aut Jia, Xiuping verfasserin (orcid)0000-0001-9916-6382 aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 142, Seite 375-387 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:142 pages:375-387 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 142 375-387 |
allfieldsGer |
10.1016/j.neunet.2021.05.029 doi (DE-627)ELV006517099 (ELSEVIER)S0893-6080(21)00225-2 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Xie, Weiying verfasserin (orcid)0000-0001-8310-024X aut Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN). The concept of SSL is introduced into hyperspectral feature extraction in an unsupervised fashion with the purpose of background suppression and target saliency. In particular, a novel structure-to-structure selection rule that takes full account of the structure, contrast, and luminance similarity is established to interpret the mapping relationship between the latent spectral feature space and the original spectral band space, to generate the optimal spectral band subset without any prior knowledge. Finally, the comprehensive result is achieved by nonlinearly combining the spatial detection on the fused latent features with the spectral detection on the selected band subset and the corresponding selected target signature. This paper paves a novel self-spectral learning way for hyperspectral target detection and identifies sensitive bands for specific targets in practice. Comparative analyses demonstrate that the proposed SSTD method presents superior detection performance compared with CSCR, ACE, CEM, hCEM, and ECEM. Spatial–spectral target detection Self-spectral learning Feature extraction Band selection Hyperspectral image (HSI) Zhang, Jiaqing verfasserin aut Lei, Jie verfasserin aut Li, Yunsong verfasserin aut Jia, Xiuping verfasserin (orcid)0000-0001-9916-6382 aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 142, Seite 375-387 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:142 pages:375-387 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 142 375-387 |
allfieldsSound |
10.1016/j.neunet.2021.05.029 doi (DE-627)ELV006517099 (ELSEVIER)S0893-6080(21)00225-2 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Xie, Weiying verfasserin (orcid)0000-0001-8310-024X aut Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN). The concept of SSL is introduced into hyperspectral feature extraction in an unsupervised fashion with the purpose of background suppression and target saliency. In particular, a novel structure-to-structure selection rule that takes full account of the structure, contrast, and luminance similarity is established to interpret the mapping relationship between the latent spectral feature space and the original spectral band space, to generate the optimal spectral band subset without any prior knowledge. Finally, the comprehensive result is achieved by nonlinearly combining the spatial detection on the fused latent features with the spectral detection on the selected band subset and the corresponding selected target signature. This paper paves a novel self-spectral learning way for hyperspectral target detection and identifies sensitive bands for specific targets in practice. Comparative analyses demonstrate that the proposed SSTD method presents superior detection performance compared with CSCR, ACE, CEM, hCEM, and ECEM. Spatial–spectral target detection Self-spectral learning Feature extraction Band selection Hyperspectral image (HSI) Zhang, Jiaqing verfasserin aut Lei, Jie verfasserin aut Li, Yunsong verfasserin aut Jia, Xiuping verfasserin (orcid)0000-0001-9916-6382 aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 142, Seite 375-387 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:142 pages:375-387 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 142 375-387 |
language |
English |
source |
Enthalten in Neural networks 142, Seite 375-387 volume:142 pages:375-387 |
sourceStr |
Enthalten in Neural networks 142, Seite 375-387 volume:142 pages:375-387 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Spatial–spectral target detection Self-spectral learning Feature extraction Band selection Hyperspectral image (HSI) |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural networks |
authorswithroles_txt_mv |
Xie, Weiying @@aut@@ Zhang, Jiaqing @@aut@@ Lei, Jie @@aut@@ Li, Yunsong @@aut@@ Jia, Xiuping @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
302468536 |
dewey-sort |
14 |
id |
ELV006517099 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006517099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162713.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neunet.2021.05.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006517099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0893-6080(21)00225-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xie, Weiying</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8310-024X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN). The concept of SSL is introduced into hyperspectral feature extraction in an unsupervised fashion with the purpose of background suppression and target saliency. In particular, a novel structure-to-structure selection rule that takes full account of the structure, contrast, and luminance similarity is established to interpret the mapping relationship between the latent spectral feature space and the original spectral band space, to generate the optimal spectral band subset without any prior knowledge. Finally, the comprehensive result is achieved by nonlinearly combining the spatial detection on the fused latent features with the spectral detection on the selected band subset and the corresponding selected target signature. This paper paves a novel self-spectral learning way for hyperspectral target detection and identifies sensitive bands for specific targets in practice. Comparative analyses demonstrate that the proposed SSTD method presents superior detection performance compared with CSCR, ACE, CEM, hCEM, and ECEM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial–spectral target detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-spectral learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperspectral image (HSI)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jiaqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lei, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yunsong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Xiuping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9916-6382</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural networks</subfield><subfield code="d">Amsterdam : Elsevier, 1988</subfield><subfield code="g">142, Seite 375-387</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468536</subfield><subfield code="w">(DE-600)1491372-0</subfield><subfield code="w">(DE-576)07971997X</subfield><subfield code="x">1879-2782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">pages:375-387</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="h">375-387</subfield></datafield></record></collection>
|
author |
Xie, Weiying |
spellingShingle |
Xie, Weiying ddc 004 bkl 54.72 misc Spatial–spectral target detection misc Self-spectral learning misc Feature extraction misc Band selection misc Hyperspectral image (HSI) Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image |
authorStr |
Xie, Weiying |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302468536 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2782 |
topic_title |
004 DE-600 54.72 bkl Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image Spatial–spectral target detection Self-spectral learning Feature extraction Band selection Hyperspectral image (HSI) |
topic |
ddc 004 bkl 54.72 misc Spatial–spectral target detection misc Self-spectral learning misc Feature extraction misc Band selection misc Hyperspectral image (HSI) |
topic_unstemmed |
ddc 004 bkl 54.72 misc Spatial–spectral target detection misc Self-spectral learning misc Feature extraction misc Band selection misc Hyperspectral image (HSI) |
topic_browse |
ddc 004 bkl 54.72 misc Spatial–spectral target detection misc Self-spectral learning misc Feature extraction misc Band selection misc Hyperspectral image (HSI) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Neural networks |
hierarchy_parent_id |
302468536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural networks |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X |
title |
Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image |
ctrlnum |
(DE-627)ELV006517099 (ELSEVIER)S0893-6080(21)00225-2 |
title_full |
Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image |
author_sort |
Xie, Weiying |
journal |
Neural networks |
journalStr |
Neural networks |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
375 |
author_browse |
Xie, Weiying Zhang, Jiaqing Lei, Jie Li, Yunsong Jia, Xiuping |
container_volume |
142 |
class |
004 DE-600 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xie, Weiying |
doi_str_mv |
10.1016/j.neunet.2021.05.029 |
normlink |
(ORCID)0000-0001-8310-024X (ORCID)0000-0001-9916-6382 |
normlink_prefix_str_mv |
(orcid)0000-0001-8310-024X (orcid)0000-0001-9916-6382 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
self-spectral learning with gan based spectral–spatial target detection for hyperspectral image |
title_auth |
Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image |
abstract |
To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN). The concept of SSL is introduced into hyperspectral feature extraction in an unsupervised fashion with the purpose of background suppression and target saliency. In particular, a novel structure-to-structure selection rule that takes full account of the structure, contrast, and luminance similarity is established to interpret the mapping relationship between the latent spectral feature space and the original spectral band space, to generate the optimal spectral band subset without any prior knowledge. Finally, the comprehensive result is achieved by nonlinearly combining the spatial detection on the fused latent features with the spectral detection on the selected band subset and the corresponding selected target signature. This paper paves a novel self-spectral learning way for hyperspectral target detection and identifies sensitive bands for specific targets in practice. Comparative analyses demonstrate that the proposed SSTD method presents superior detection performance compared with CSCR, ACE, CEM, hCEM, and ECEM. |
abstractGer |
To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN). The concept of SSL is introduced into hyperspectral feature extraction in an unsupervised fashion with the purpose of background suppression and target saliency. In particular, a novel structure-to-structure selection rule that takes full account of the structure, contrast, and luminance similarity is established to interpret the mapping relationship between the latent spectral feature space and the original spectral band space, to generate the optimal spectral band subset without any prior knowledge. Finally, the comprehensive result is achieved by nonlinearly combining the spatial detection on the fused latent features with the spectral detection on the selected band subset and the corresponding selected target signature. This paper paves a novel self-spectral learning way for hyperspectral target detection and identifies sensitive bands for specific targets in practice. Comparative analyses demonstrate that the proposed SSTD method presents superior detection performance compared with CSCR, ACE, CEM, hCEM, and ECEM. |
abstract_unstemmed |
To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN). The concept of SSL is introduced into hyperspectral feature extraction in an unsupervised fashion with the purpose of background suppression and target saliency. In particular, a novel structure-to-structure selection rule that takes full account of the structure, contrast, and luminance similarity is established to interpret the mapping relationship between the latent spectral feature space and the original spectral band space, to generate the optimal spectral band subset without any prior knowledge. Finally, the comprehensive result is achieved by nonlinearly combining the spatial detection on the fused latent features with the spectral detection on the selected band subset and the corresponding selected target signature. This paper paves a novel self-spectral learning way for hyperspectral target detection and identifies sensitive bands for specific targets in practice. Comparative analyses demonstrate that the proposed SSTD method presents superior detection performance compared with CSCR, ACE, CEM, hCEM, and ECEM. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image |
remote_bool |
true |
author2 |
Zhang, Jiaqing Lei, Jie Li, Yunsong Jia, Xiuping |
author2Str |
Zhang, Jiaqing Lei, Jie Li, Yunsong Jia, Xiuping |
ppnlink |
302468536 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.neunet.2021.05.029 |
up_date |
2024-07-06T21:38:58.294Z |
_version_ |
1803867325250666496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006517099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162713.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neunet.2021.05.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006517099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0893-6080(21)00225-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xie, Weiying</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8310-024X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To alleviate the shortcomings of target detection in only one aspect and reduce redundant information among adjacent bands, we propose a spectral–spatial target detection (SSTD) framework in deep latent space based on self-spectral learning (SSL) with a spectral generative adversarial network (GAN). The concept of SSL is introduced into hyperspectral feature extraction in an unsupervised fashion with the purpose of background suppression and target saliency. In particular, a novel structure-to-structure selection rule that takes full account of the structure, contrast, and luminance similarity is established to interpret the mapping relationship between the latent spectral feature space and the original spectral band space, to generate the optimal spectral band subset without any prior knowledge. Finally, the comprehensive result is achieved by nonlinearly combining the spatial detection on the fused latent features with the spectral detection on the selected band subset and the corresponding selected target signature. This paper paves a novel self-spectral learning way for hyperspectral target detection and identifies sensitive bands for specific targets in practice. Comparative analyses demonstrate that the proposed SSTD method presents superior detection performance compared with CSCR, ACE, CEM, hCEM, and ECEM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial–spectral target detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-spectral learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperspectral image (HSI)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jiaqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lei, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yunsong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Xiuping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9916-6382</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural networks</subfield><subfield code="d">Amsterdam : Elsevier, 1988</subfield><subfield code="g">142, Seite 375-387</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468536</subfield><subfield code="w">(DE-600)1491372-0</subfield><subfield code="w">(DE-576)07971997X</subfield><subfield code="x">1879-2782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">pages:375-387</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="h">375-387</subfield></datafield></record></collection>
|
score |
7.3987417 |