Memory performance optimization of DTN relay node based on M/G/1
Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and base...
Ausführliche Beschreibung
Autor*in: |
Ji, Changpeng [verfasserIn] Han, Xingmei [verfasserIn] Dai, Wei [verfasserIn] Ji, Wenxin [verfasserIn] Wang, Zirui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computer communications - Amsterdam [u.a.] : Elsevier Science, 1978, 177, Seite 24-32 |
---|---|
Übergeordnetes Werk: |
volume:177 ; pages:24-32 |
DOI / URN: |
10.1016/j.comcom.2021.06.008 |
---|
Katalog-ID: |
ELV006534406 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006534406 | ||
003 | DE-627 | ||
005 | 20230524125630.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.comcom.2021.06.008 |2 doi | |
035 | |a (DE-627)ELV006534406 | ||
035 | |a (ELSEVIER)S0140-3664(21)00232-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Ji, Changpeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Memory performance optimization of DTN relay node based on M/G/1 |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and based on the data delivery mechanism of store-and-forward and retransmission under Bundle Protocol/Licklider Transmission Protocol in DTN. The data delivery time can be divided into two parts by the last round of LTP data segments transmission process, the custody queue length model of BP data unit (i.e. bundle) in relay nodes memory space is determined by calculating the retransmission time of LTP data segments spent in different delivery parts, which can directly measure the consumption and use of relay nodes memory resources. Without affecting the correct delivery of data and in order to obtain a more perfect memory resources allocation strategy, the optimized length of LTP data segment and the optimized number of bundles aggregated by per LTP block are proposed as the joint optimization scheme. The simulation results show that in deep-space channel environment where bundle arrival rate and bit error rate constantly change, the joint optimization scheme proposed in this paper can always maintain the shortest average queue length, which means, occupy less memory space. Compared with the queue without optimization, the queue length of the joint optimization scheme is reduced by 76.65%, which demonstrates the superior performance of this scheme, and realizes the reasonable optimization and utilization of the memory resources of the relay nodes in DTN. | ||
650 | 4 | |a DTN | |
650 | 4 | |a BP/LTP | |
650 | 4 | |a Queuing model | |
650 | 4 | |a Memory performance optimization | |
650 | 4 | |a M/G/1 | |
700 | 1 | |a Han, Xingmei |e verfasserin |4 aut | |
700 | 1 | |a Dai, Wei |e verfasserin |4 aut | |
700 | 1 | |a Ji, Wenxin |e verfasserin |4 aut | |
700 | 1 | |a Wang, Zirui |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computer communications |d Amsterdam [u.a.] : Elsevier Science, 1978 |g 177, Seite 24-32 |h Online-Ressource |w (DE-627)270937900 |w (DE-600)1478742-8 |w (DE-576)078316790 |x 0140-3664 |7 nnns |
773 | 1 | 8 | |g volume:177 |g pages:24-32 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.00 |j Informatik: Allgemeines |
951 | |a AR | ||
952 | |d 177 |h 24-32 |
author_variant |
c j cj x h xh w d wd w j wj z w zw |
---|---|
matchkey_str |
article:01403664:2021----::eoyefracotmztoodnea |
hierarchy_sort_str |
2021 |
bklnumber |
54.00 |
publishDate |
2021 |
allfields |
10.1016/j.comcom.2021.06.008 doi (DE-627)ELV006534406 (ELSEVIER)S0140-3664(21)00232-2 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Ji, Changpeng verfasserin aut Memory performance optimization of DTN relay node based on M/G/1 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and based on the data delivery mechanism of store-and-forward and retransmission under Bundle Protocol/Licklider Transmission Protocol in DTN. The data delivery time can be divided into two parts by the last round of LTP data segments transmission process, the custody queue length model of BP data unit (i.e. bundle) in relay nodes memory space is determined by calculating the retransmission time of LTP data segments spent in different delivery parts, which can directly measure the consumption and use of relay nodes memory resources. Without affecting the correct delivery of data and in order to obtain a more perfect memory resources allocation strategy, the optimized length of LTP data segment and the optimized number of bundles aggregated by per LTP block are proposed as the joint optimization scheme. The simulation results show that in deep-space channel environment where bundle arrival rate and bit error rate constantly change, the joint optimization scheme proposed in this paper can always maintain the shortest average queue length, which means, occupy less memory space. Compared with the queue without optimization, the queue length of the joint optimization scheme is reduced by 76.65%, which demonstrates the superior performance of this scheme, and realizes the reasonable optimization and utilization of the memory resources of the relay nodes in DTN. DTN BP/LTP Queuing model Memory performance optimization M/G/1 Han, Xingmei verfasserin aut Dai, Wei verfasserin aut Ji, Wenxin verfasserin aut Wang, Zirui verfasserin aut Enthalten in Computer communications Amsterdam [u.a.] : Elsevier Science, 1978 177, Seite 24-32 Online-Ressource (DE-627)270937900 (DE-600)1478742-8 (DE-576)078316790 0140-3664 nnns volume:177 pages:24-32 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 177 24-32 |
spelling |
10.1016/j.comcom.2021.06.008 doi (DE-627)ELV006534406 (ELSEVIER)S0140-3664(21)00232-2 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Ji, Changpeng verfasserin aut Memory performance optimization of DTN relay node based on M/G/1 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and based on the data delivery mechanism of store-and-forward and retransmission under Bundle Protocol/Licklider Transmission Protocol in DTN. The data delivery time can be divided into two parts by the last round of LTP data segments transmission process, the custody queue length model of BP data unit (i.e. bundle) in relay nodes memory space is determined by calculating the retransmission time of LTP data segments spent in different delivery parts, which can directly measure the consumption and use of relay nodes memory resources. Without affecting the correct delivery of data and in order to obtain a more perfect memory resources allocation strategy, the optimized length of LTP data segment and the optimized number of bundles aggregated by per LTP block are proposed as the joint optimization scheme. The simulation results show that in deep-space channel environment where bundle arrival rate and bit error rate constantly change, the joint optimization scheme proposed in this paper can always maintain the shortest average queue length, which means, occupy less memory space. Compared with the queue without optimization, the queue length of the joint optimization scheme is reduced by 76.65%, which demonstrates the superior performance of this scheme, and realizes the reasonable optimization and utilization of the memory resources of the relay nodes in DTN. DTN BP/LTP Queuing model Memory performance optimization M/G/1 Han, Xingmei verfasserin aut Dai, Wei verfasserin aut Ji, Wenxin verfasserin aut Wang, Zirui verfasserin aut Enthalten in Computer communications Amsterdam [u.a.] : Elsevier Science, 1978 177, Seite 24-32 Online-Ressource (DE-627)270937900 (DE-600)1478742-8 (DE-576)078316790 0140-3664 nnns volume:177 pages:24-32 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 177 24-32 |
allfields_unstemmed |
10.1016/j.comcom.2021.06.008 doi (DE-627)ELV006534406 (ELSEVIER)S0140-3664(21)00232-2 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Ji, Changpeng verfasserin aut Memory performance optimization of DTN relay node based on M/G/1 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and based on the data delivery mechanism of store-and-forward and retransmission under Bundle Protocol/Licklider Transmission Protocol in DTN. The data delivery time can be divided into two parts by the last round of LTP data segments transmission process, the custody queue length model of BP data unit (i.e. bundle) in relay nodes memory space is determined by calculating the retransmission time of LTP data segments spent in different delivery parts, which can directly measure the consumption and use of relay nodes memory resources. Without affecting the correct delivery of data and in order to obtain a more perfect memory resources allocation strategy, the optimized length of LTP data segment and the optimized number of bundles aggregated by per LTP block are proposed as the joint optimization scheme. The simulation results show that in deep-space channel environment where bundle arrival rate and bit error rate constantly change, the joint optimization scheme proposed in this paper can always maintain the shortest average queue length, which means, occupy less memory space. Compared with the queue without optimization, the queue length of the joint optimization scheme is reduced by 76.65%, which demonstrates the superior performance of this scheme, and realizes the reasonable optimization and utilization of the memory resources of the relay nodes in DTN. DTN BP/LTP Queuing model Memory performance optimization M/G/1 Han, Xingmei verfasserin aut Dai, Wei verfasserin aut Ji, Wenxin verfasserin aut Wang, Zirui verfasserin aut Enthalten in Computer communications Amsterdam [u.a.] : Elsevier Science, 1978 177, Seite 24-32 Online-Ressource (DE-627)270937900 (DE-600)1478742-8 (DE-576)078316790 0140-3664 nnns volume:177 pages:24-32 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 177 24-32 |
allfieldsGer |
10.1016/j.comcom.2021.06.008 doi (DE-627)ELV006534406 (ELSEVIER)S0140-3664(21)00232-2 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Ji, Changpeng verfasserin aut Memory performance optimization of DTN relay node based on M/G/1 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and based on the data delivery mechanism of store-and-forward and retransmission under Bundle Protocol/Licklider Transmission Protocol in DTN. The data delivery time can be divided into two parts by the last round of LTP data segments transmission process, the custody queue length model of BP data unit (i.e. bundle) in relay nodes memory space is determined by calculating the retransmission time of LTP data segments spent in different delivery parts, which can directly measure the consumption and use of relay nodes memory resources. Without affecting the correct delivery of data and in order to obtain a more perfect memory resources allocation strategy, the optimized length of LTP data segment and the optimized number of bundles aggregated by per LTP block are proposed as the joint optimization scheme. The simulation results show that in deep-space channel environment where bundle arrival rate and bit error rate constantly change, the joint optimization scheme proposed in this paper can always maintain the shortest average queue length, which means, occupy less memory space. Compared with the queue without optimization, the queue length of the joint optimization scheme is reduced by 76.65%, which demonstrates the superior performance of this scheme, and realizes the reasonable optimization and utilization of the memory resources of the relay nodes in DTN. DTN BP/LTP Queuing model Memory performance optimization M/G/1 Han, Xingmei verfasserin aut Dai, Wei verfasserin aut Ji, Wenxin verfasserin aut Wang, Zirui verfasserin aut Enthalten in Computer communications Amsterdam [u.a.] : Elsevier Science, 1978 177, Seite 24-32 Online-Ressource (DE-627)270937900 (DE-600)1478742-8 (DE-576)078316790 0140-3664 nnns volume:177 pages:24-32 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 177 24-32 |
allfieldsSound |
10.1016/j.comcom.2021.06.008 doi (DE-627)ELV006534406 (ELSEVIER)S0140-3664(21)00232-2 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Ji, Changpeng verfasserin aut Memory performance optimization of DTN relay node based on M/G/1 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and based on the data delivery mechanism of store-and-forward and retransmission under Bundle Protocol/Licklider Transmission Protocol in DTN. The data delivery time can be divided into two parts by the last round of LTP data segments transmission process, the custody queue length model of BP data unit (i.e. bundle) in relay nodes memory space is determined by calculating the retransmission time of LTP data segments spent in different delivery parts, which can directly measure the consumption and use of relay nodes memory resources. Without affecting the correct delivery of data and in order to obtain a more perfect memory resources allocation strategy, the optimized length of LTP data segment and the optimized number of bundles aggregated by per LTP block are proposed as the joint optimization scheme. The simulation results show that in deep-space channel environment where bundle arrival rate and bit error rate constantly change, the joint optimization scheme proposed in this paper can always maintain the shortest average queue length, which means, occupy less memory space. Compared with the queue without optimization, the queue length of the joint optimization scheme is reduced by 76.65%, which demonstrates the superior performance of this scheme, and realizes the reasonable optimization and utilization of the memory resources of the relay nodes in DTN. DTN BP/LTP Queuing model Memory performance optimization M/G/1 Han, Xingmei verfasserin aut Dai, Wei verfasserin aut Ji, Wenxin verfasserin aut Wang, Zirui verfasserin aut Enthalten in Computer communications Amsterdam [u.a.] : Elsevier Science, 1978 177, Seite 24-32 Online-Ressource (DE-627)270937900 (DE-600)1478742-8 (DE-576)078316790 0140-3664 nnns volume:177 pages:24-32 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 177 24-32 |
language |
English |
source |
Enthalten in Computer communications 177, Seite 24-32 volume:177 pages:24-32 |
sourceStr |
Enthalten in Computer communications 177, Seite 24-32 volume:177 pages:24-32 |
format_phy_str_mv |
Article |
bklname |
Informatik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
DTN BP/LTP Queuing model Memory performance optimization M/G/1 |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Computer communications |
authorswithroles_txt_mv |
Ji, Changpeng @@aut@@ Han, Xingmei @@aut@@ Dai, Wei @@aut@@ Ji, Wenxin @@aut@@ Wang, Zirui @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
270937900 |
dewey-sort |
14 |
id |
ELV006534406 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006534406</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524125630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.comcom.2021.06.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006534406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0140-3664(21)00232-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Changpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Memory performance optimization of DTN relay node based on M/G/1</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and based on the data delivery mechanism of store-and-forward and retransmission under Bundle Protocol/Licklider Transmission Protocol in DTN. The data delivery time can be divided into two parts by the last round of LTP data segments transmission process, the custody queue length model of BP data unit (i.e. bundle) in relay nodes memory space is determined by calculating the retransmission time of LTP data segments spent in different delivery parts, which can directly measure the consumption and use of relay nodes memory resources. Without affecting the correct delivery of data and in order to obtain a more perfect memory resources allocation strategy, the optimized length of LTP data segment and the optimized number of bundles aggregated by per LTP block are proposed as the joint optimization scheme. The simulation results show that in deep-space channel environment where bundle arrival rate and bit error rate constantly change, the joint optimization scheme proposed in this paper can always maintain the shortest average queue length, which means, occupy less memory space. Compared with the queue without optimization, the queue length of the joint optimization scheme is reduced by 76.65%, which demonstrates the superior performance of this scheme, and realizes the reasonable optimization and utilization of the memory resources of the relay nodes in DTN.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DTN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BP/LTP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Queuing model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memory performance optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">M/G/1</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Xingmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Wenxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zirui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computer communications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">177, Seite 24-32</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)270937900</subfield><subfield code="w">(DE-600)1478742-8</subfield><subfield code="w">(DE-576)078316790</subfield><subfield code="x">0140-3664</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:177</subfield><subfield code="g">pages:24-32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">177</subfield><subfield code="h">24-32</subfield></datafield></record></collection>
|
author |
Ji, Changpeng |
spellingShingle |
Ji, Changpeng ddc 004 bkl 54.00 misc DTN misc BP/LTP misc Queuing model misc Memory performance optimization misc M/G/1 Memory performance optimization of DTN relay node based on M/G/1 |
authorStr |
Ji, Changpeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)270937900 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0140-3664 |
topic_title |
004 DE-600 54.00 bkl Memory performance optimization of DTN relay node based on M/G/1 DTN BP/LTP Queuing model Memory performance optimization M/G/1 |
topic |
ddc 004 bkl 54.00 misc DTN misc BP/LTP misc Queuing model misc Memory performance optimization misc M/G/1 |
topic_unstemmed |
ddc 004 bkl 54.00 misc DTN misc BP/LTP misc Queuing model misc Memory performance optimization misc M/G/1 |
topic_browse |
ddc 004 bkl 54.00 misc DTN misc BP/LTP misc Queuing model misc Memory performance optimization misc M/G/1 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computer communications |
hierarchy_parent_id |
270937900 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computer communications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)270937900 (DE-600)1478742-8 (DE-576)078316790 |
title |
Memory performance optimization of DTN relay node based on M/G/1 |
ctrlnum |
(DE-627)ELV006534406 (ELSEVIER)S0140-3664(21)00232-2 |
title_full |
Memory performance optimization of DTN relay node based on M/G/1 |
author_sort |
Ji, Changpeng |
journal |
Computer communications |
journalStr |
Computer communications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
24 |
author_browse |
Ji, Changpeng Han, Xingmei Dai, Wei Ji, Wenxin Wang, Zirui |
container_volume |
177 |
class |
004 DE-600 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ji, Changpeng |
doi_str_mv |
10.1016/j.comcom.2021.06.008 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
memory performance optimization of dtn relay node based on m/g/1 |
title_auth |
Memory performance optimization of DTN relay node based on M/G/1 |
abstract |
Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and based on the data delivery mechanism of store-and-forward and retransmission under Bundle Protocol/Licklider Transmission Protocol in DTN. The data delivery time can be divided into two parts by the last round of LTP data segments transmission process, the custody queue length model of BP data unit (i.e. bundle) in relay nodes memory space is determined by calculating the retransmission time of LTP data segments spent in different delivery parts, which can directly measure the consumption and use of relay nodes memory resources. Without affecting the correct delivery of data and in order to obtain a more perfect memory resources allocation strategy, the optimized length of LTP data segment and the optimized number of bundles aggregated by per LTP block are proposed as the joint optimization scheme. The simulation results show that in deep-space channel environment where bundle arrival rate and bit error rate constantly change, the joint optimization scheme proposed in this paper can always maintain the shortest average queue length, which means, occupy less memory space. Compared with the queue without optimization, the queue length of the joint optimization scheme is reduced by 76.65%, which demonstrates the superior performance of this scheme, and realizes the reasonable optimization and utilization of the memory resources of the relay nodes in DTN. |
abstractGer |
Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and based on the data delivery mechanism of store-and-forward and retransmission under Bundle Protocol/Licklider Transmission Protocol in DTN. The data delivery time can be divided into two parts by the last round of LTP data segments transmission process, the custody queue length model of BP data unit (i.e. bundle) in relay nodes memory space is determined by calculating the retransmission time of LTP data segments spent in different delivery parts, which can directly measure the consumption and use of relay nodes memory resources. Without affecting the correct delivery of data and in order to obtain a more perfect memory resources allocation strategy, the optimized length of LTP data segment and the optimized number of bundles aggregated by per LTP block are proposed as the joint optimization scheme. The simulation results show that in deep-space channel environment where bundle arrival rate and bit error rate constantly change, the joint optimization scheme proposed in this paper can always maintain the shortest average queue length, which means, occupy less memory space. Compared with the queue without optimization, the queue length of the joint optimization scheme is reduced by 76.65%, which demonstrates the superior performance of this scheme, and realizes the reasonable optimization and utilization of the memory resources of the relay nodes in DTN. |
abstract_unstemmed |
Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and based on the data delivery mechanism of store-and-forward and retransmission under Bundle Protocol/Licklider Transmission Protocol in DTN. The data delivery time can be divided into two parts by the last round of LTP data segments transmission process, the custody queue length model of BP data unit (i.e. bundle) in relay nodes memory space is determined by calculating the retransmission time of LTP data segments spent in different delivery parts, which can directly measure the consumption and use of relay nodes memory resources. Without affecting the correct delivery of data and in order to obtain a more perfect memory resources allocation strategy, the optimized length of LTP data segment and the optimized number of bundles aggregated by per LTP block are proposed as the joint optimization scheme. The simulation results show that in deep-space channel environment where bundle arrival rate and bit error rate constantly change, the joint optimization scheme proposed in this paper can always maintain the shortest average queue length, which means, occupy less memory space. Compared with the queue without optimization, the queue length of the joint optimization scheme is reduced by 76.65%, which demonstrates the superior performance of this scheme, and realizes the reasonable optimization and utilization of the memory resources of the relay nodes in DTN. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Memory performance optimization of DTN relay node based on M/G/1 |
remote_bool |
true |
author2 |
Han, Xingmei Dai, Wei Ji, Wenxin Wang, Zirui |
author2Str |
Han, Xingmei Dai, Wei Ji, Wenxin Wang, Zirui |
ppnlink |
270937900 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.comcom.2021.06.008 |
up_date |
2024-07-06T21:42:37.548Z |
_version_ |
1803867555154100224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006534406</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524125630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.comcom.2021.06.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006534406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0140-3664(21)00232-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Changpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Memory performance optimization of DTN relay node based on M/G/1</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Delay/Disruption Tolerant Networking offers a solution to communications in challenged networks despite the long propagation delay, and intermittent connectivity is commonly characteristic of deep-space communications. It combined with the actual application scenarios of M/G/1 queuing model and based on the data delivery mechanism of store-and-forward and retransmission under Bundle Protocol/Licklider Transmission Protocol in DTN. The data delivery time can be divided into two parts by the last round of LTP data segments transmission process, the custody queue length model of BP data unit (i.e. bundle) in relay nodes memory space is determined by calculating the retransmission time of LTP data segments spent in different delivery parts, which can directly measure the consumption and use of relay nodes memory resources. Without affecting the correct delivery of data and in order to obtain a more perfect memory resources allocation strategy, the optimized length of LTP data segment and the optimized number of bundles aggregated by per LTP block are proposed as the joint optimization scheme. The simulation results show that in deep-space channel environment where bundle arrival rate and bit error rate constantly change, the joint optimization scheme proposed in this paper can always maintain the shortest average queue length, which means, occupy less memory space. Compared with the queue without optimization, the queue length of the joint optimization scheme is reduced by 76.65%, which demonstrates the superior performance of this scheme, and realizes the reasonable optimization and utilization of the memory resources of the relay nodes in DTN.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DTN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BP/LTP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Queuing model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memory performance optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">M/G/1</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Xingmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Wenxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zirui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computer communications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">177, Seite 24-32</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)270937900</subfield><subfield code="w">(DE-600)1478742-8</subfield><subfield code="w">(DE-576)078316790</subfield><subfield code="x">0140-3664</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:177</subfield><subfield code="g">pages:24-32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">177</subfield><subfield code="h">24-32</subfield></datafield></record></collection>
|
score |
7.40189 |