Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell
Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-...
Ausführliche Beschreibung
Autor*in: |
Cao, Yuping [verfasserIn] Zhang, Liang [verfasserIn] Yang, Jilu [verfasserIn] Zhang, Jin [verfasserIn] Si, Wenbo [verfasserIn] Wang, Jiemin [verfasserIn] Iqbal, Anam [verfasserIn] Qin, Wenwu [verfasserIn] Liu, Yun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Sensors and actuators |
---|---|
Übergeordnetes Werk: |
volume:346 |
DOI / URN: |
10.1016/j.snb.2021.130472 |
---|
Katalog-ID: |
ELV00653662X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00653662X | ||
003 | DE-627 | ||
005 | 20230524142253.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.snb.2021.130472 |2 doi | |
035 | |a (DE-627)ELV00653662X | ||
035 | |a (ELSEVIER)S0925-4005(21)01040-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
084 | |a 50.22 |2 bkl | ||
084 | |a 35.07 |2 bkl | ||
100 | 1 | |a Cao, Yuping |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-AC was grafted by refluxing in acetic anhydride. TzDha-AC shows higher relative fluorescence quantum yield (Φf) in various organic solvents and water, which is approximately 1.35 to 5.31 times to TzDha. What’s more surprising, TzDha-AC shows excellent ratiometric effect when it is used to detecte hydrazine (N2H4). Detection mechanism is attributed to that hydrazine prevents the intramolecular charge transfer (ICT) from benzene ring to triazine ring of TzDha-AC, thus the emission blue shifted from 601 nm to 526 nm. The detection limit (DL) of N2H4 is calculated to be 0.038 mM in the linear range of 0−10 mM. In addition, we also use TzDha-AC to detecte hydrazine produced from isoniazid metabolism in mouse liver cells and find that TzDha-AC could be a new material employed for simple isoniazid metabolism in cell. | ||
650 | 4 | |a Covalent organic frameworks | |
650 | 4 | |a Fluorescence quantum yield | |
650 | 4 | |a Ratiometric sensor | |
650 | 4 | |a Isoniazid metabolism | |
650 | 4 | |a Hydrazine | |
700 | 1 | |a Zhang, Liang |e verfasserin |4 aut | |
700 | 1 | |a Yang, Jilu |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jin |e verfasserin |4 aut | |
700 | 1 | |a Si, Wenbo |e verfasserin |4 aut | |
700 | 1 | |a Wang, Jiemin |e verfasserin |4 aut | |
700 | 1 | |a Iqbal, Anam |e verfasserin |4 aut | |
700 | 1 | |a Qin, Wenwu |e verfasserin |0 (orcid)0000-0002-9782-6647 |4 aut | |
700 | 1 | |a Liu, Yun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Sensors and actuators <Lausanne> / B |d Amsterdam [u.a.] : Elsevier Science, 1990 |g 346 |h Online-Ressource |w (DE-627)306710358 |w (DE-600)1500731-5 |w (DE-576)082435855 |x 0925-4005 |7 nnns |
773 | 1 | 8 | |g volume:346 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.22 |j Sensorik |
936 | b | k | |a 35.07 |j Chemisches Labor |j chemische Methoden |
951 | |a AR | ||
952 | |d 346 |
author_variant |
y c yc l z lz j y jy j z jz w s ws j w jw a i ai w q wq y l yl |
---|---|
matchkey_str |
article:09254005:2021----::aimticvlnogncrmwrfoecneesrodtcigyrznpoue |
hierarchy_sort_str |
2021 |
bklnumber |
50.22 35.07 |
publishDate |
2021 |
allfields |
10.1016/j.snb.2021.130472 doi (DE-627)ELV00653662X (ELSEVIER)S0925-4005(21)01040-6 DE-627 ger DE-627 rda eng 530 620 DE-600 50.22 bkl 35.07 bkl Cao, Yuping verfasserin aut Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-AC was grafted by refluxing in acetic anhydride. TzDha-AC shows higher relative fluorescence quantum yield (Φf) in various organic solvents and water, which is approximately 1.35 to 5.31 times to TzDha. What’s more surprising, TzDha-AC shows excellent ratiometric effect when it is used to detecte hydrazine (N2H4). Detection mechanism is attributed to that hydrazine prevents the intramolecular charge transfer (ICT) from benzene ring to triazine ring of TzDha-AC, thus the emission blue shifted from 601 nm to 526 nm. The detection limit (DL) of N2H4 is calculated to be 0.038 mM in the linear range of 0−10 mM. In addition, we also use TzDha-AC to detecte hydrazine produced from isoniazid metabolism in mouse liver cells and find that TzDha-AC could be a new material employed for simple isoniazid metabolism in cell. Covalent organic frameworks Fluorescence quantum yield Ratiometric sensor Isoniazid metabolism Hydrazine Zhang, Liang verfasserin aut Yang, Jilu verfasserin aut Zhang, Jin verfasserin aut Si, Wenbo verfasserin aut Wang, Jiemin verfasserin aut Iqbal, Anam verfasserin aut Qin, Wenwu verfasserin (orcid)0000-0002-9782-6647 aut Liu, Yun verfasserin aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 346 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:346 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.22 Sensorik 35.07 Chemisches Labor chemische Methoden AR 346 |
spelling |
10.1016/j.snb.2021.130472 doi (DE-627)ELV00653662X (ELSEVIER)S0925-4005(21)01040-6 DE-627 ger DE-627 rda eng 530 620 DE-600 50.22 bkl 35.07 bkl Cao, Yuping verfasserin aut Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-AC was grafted by refluxing in acetic anhydride. TzDha-AC shows higher relative fluorescence quantum yield (Φf) in various organic solvents and water, which is approximately 1.35 to 5.31 times to TzDha. What’s more surprising, TzDha-AC shows excellent ratiometric effect when it is used to detecte hydrazine (N2H4). Detection mechanism is attributed to that hydrazine prevents the intramolecular charge transfer (ICT) from benzene ring to triazine ring of TzDha-AC, thus the emission blue shifted from 601 nm to 526 nm. The detection limit (DL) of N2H4 is calculated to be 0.038 mM in the linear range of 0−10 mM. In addition, we also use TzDha-AC to detecte hydrazine produced from isoniazid metabolism in mouse liver cells and find that TzDha-AC could be a new material employed for simple isoniazid metabolism in cell. Covalent organic frameworks Fluorescence quantum yield Ratiometric sensor Isoniazid metabolism Hydrazine Zhang, Liang verfasserin aut Yang, Jilu verfasserin aut Zhang, Jin verfasserin aut Si, Wenbo verfasserin aut Wang, Jiemin verfasserin aut Iqbal, Anam verfasserin aut Qin, Wenwu verfasserin (orcid)0000-0002-9782-6647 aut Liu, Yun verfasserin aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 346 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:346 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.22 Sensorik 35.07 Chemisches Labor chemische Methoden AR 346 |
allfields_unstemmed |
10.1016/j.snb.2021.130472 doi (DE-627)ELV00653662X (ELSEVIER)S0925-4005(21)01040-6 DE-627 ger DE-627 rda eng 530 620 DE-600 50.22 bkl 35.07 bkl Cao, Yuping verfasserin aut Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-AC was grafted by refluxing in acetic anhydride. TzDha-AC shows higher relative fluorescence quantum yield (Φf) in various organic solvents and water, which is approximately 1.35 to 5.31 times to TzDha. What’s more surprising, TzDha-AC shows excellent ratiometric effect when it is used to detecte hydrazine (N2H4). Detection mechanism is attributed to that hydrazine prevents the intramolecular charge transfer (ICT) from benzene ring to triazine ring of TzDha-AC, thus the emission blue shifted from 601 nm to 526 nm. The detection limit (DL) of N2H4 is calculated to be 0.038 mM in the linear range of 0−10 mM. In addition, we also use TzDha-AC to detecte hydrazine produced from isoniazid metabolism in mouse liver cells and find that TzDha-AC could be a new material employed for simple isoniazid metabolism in cell. Covalent organic frameworks Fluorescence quantum yield Ratiometric sensor Isoniazid metabolism Hydrazine Zhang, Liang verfasserin aut Yang, Jilu verfasserin aut Zhang, Jin verfasserin aut Si, Wenbo verfasserin aut Wang, Jiemin verfasserin aut Iqbal, Anam verfasserin aut Qin, Wenwu verfasserin (orcid)0000-0002-9782-6647 aut Liu, Yun verfasserin aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 346 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:346 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.22 Sensorik 35.07 Chemisches Labor chemische Methoden AR 346 |
allfieldsGer |
10.1016/j.snb.2021.130472 doi (DE-627)ELV00653662X (ELSEVIER)S0925-4005(21)01040-6 DE-627 ger DE-627 rda eng 530 620 DE-600 50.22 bkl 35.07 bkl Cao, Yuping verfasserin aut Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-AC was grafted by refluxing in acetic anhydride. TzDha-AC shows higher relative fluorescence quantum yield (Φf) in various organic solvents and water, which is approximately 1.35 to 5.31 times to TzDha. What’s more surprising, TzDha-AC shows excellent ratiometric effect when it is used to detecte hydrazine (N2H4). Detection mechanism is attributed to that hydrazine prevents the intramolecular charge transfer (ICT) from benzene ring to triazine ring of TzDha-AC, thus the emission blue shifted from 601 nm to 526 nm. The detection limit (DL) of N2H4 is calculated to be 0.038 mM in the linear range of 0−10 mM. In addition, we also use TzDha-AC to detecte hydrazine produced from isoniazid metabolism in mouse liver cells and find that TzDha-AC could be a new material employed for simple isoniazid metabolism in cell. Covalent organic frameworks Fluorescence quantum yield Ratiometric sensor Isoniazid metabolism Hydrazine Zhang, Liang verfasserin aut Yang, Jilu verfasserin aut Zhang, Jin verfasserin aut Si, Wenbo verfasserin aut Wang, Jiemin verfasserin aut Iqbal, Anam verfasserin aut Qin, Wenwu verfasserin (orcid)0000-0002-9782-6647 aut Liu, Yun verfasserin aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 346 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:346 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.22 Sensorik 35.07 Chemisches Labor chemische Methoden AR 346 |
allfieldsSound |
10.1016/j.snb.2021.130472 doi (DE-627)ELV00653662X (ELSEVIER)S0925-4005(21)01040-6 DE-627 ger DE-627 rda eng 530 620 DE-600 50.22 bkl 35.07 bkl Cao, Yuping verfasserin aut Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-AC was grafted by refluxing in acetic anhydride. TzDha-AC shows higher relative fluorescence quantum yield (Φf) in various organic solvents and water, which is approximately 1.35 to 5.31 times to TzDha. What’s more surprising, TzDha-AC shows excellent ratiometric effect when it is used to detecte hydrazine (N2H4). Detection mechanism is attributed to that hydrazine prevents the intramolecular charge transfer (ICT) from benzene ring to triazine ring of TzDha-AC, thus the emission blue shifted from 601 nm to 526 nm. The detection limit (DL) of N2H4 is calculated to be 0.038 mM in the linear range of 0−10 mM. In addition, we also use TzDha-AC to detecte hydrazine produced from isoniazid metabolism in mouse liver cells and find that TzDha-AC could be a new material employed for simple isoniazid metabolism in cell. Covalent organic frameworks Fluorescence quantum yield Ratiometric sensor Isoniazid metabolism Hydrazine Zhang, Liang verfasserin aut Yang, Jilu verfasserin aut Zhang, Jin verfasserin aut Si, Wenbo verfasserin aut Wang, Jiemin verfasserin aut Iqbal, Anam verfasserin aut Qin, Wenwu verfasserin (orcid)0000-0002-9782-6647 aut Liu, Yun verfasserin aut Enthalten in Sensors and actuators <Lausanne> / B Amsterdam [u.a.] : Elsevier Science, 1990 346 Online-Ressource (DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 0925-4005 nnns volume:346 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.22 Sensorik 35.07 Chemisches Labor chemische Methoden AR 346 |
language |
English |
source |
Enthalten in Sensors and actuators <Lausanne> / B 346 volume:346 |
sourceStr |
Enthalten in Sensors and actuators <Lausanne> / B 346 volume:346 |
format_phy_str_mv |
Article |
bklname |
Sensorik Chemisches Labor chemische Methoden |
institution |
findex.gbv.de |
topic_facet |
Covalent organic frameworks Fluorescence quantum yield Ratiometric sensor Isoniazid metabolism Hydrazine |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Sensors and actuators <Lausanne> / B |
authorswithroles_txt_mv |
Cao, Yuping @@aut@@ Zhang, Liang @@aut@@ Yang, Jilu @@aut@@ Zhang, Jin @@aut@@ Si, Wenbo @@aut@@ Wang, Jiemin @@aut@@ Iqbal, Anam @@aut@@ Qin, Wenwu @@aut@@ Liu, Yun @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
306710358 |
dewey-sort |
3530 |
id |
ELV00653662X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00653662X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142253.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.snb.2021.130472</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00653662X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-4005(21)01040-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cao, Yuping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-AC was grafted by refluxing in acetic anhydride. TzDha-AC shows higher relative fluorescence quantum yield (Φf) in various organic solvents and water, which is approximately 1.35 to 5.31 times to TzDha. What’s more surprising, TzDha-AC shows excellent ratiometric effect when it is used to detecte hydrazine (N2H4). Detection mechanism is attributed to that hydrazine prevents the intramolecular charge transfer (ICT) from benzene ring to triazine ring of TzDha-AC, thus the emission blue shifted from 601 nm to 526 nm. The detection limit (DL) of N2H4 is calculated to be 0.038 mM in the linear range of 0−10 mM. In addition, we also use TzDha-AC to detecte hydrazine produced from isoniazid metabolism in mouse liver cells and find that TzDha-AC could be a new material employed for simple isoniazid metabolism in cell.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Covalent organic frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescence quantum yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ratiometric sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isoniazid metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrazine</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jilu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Si, Wenbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiemin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iqbal, Anam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Wenwu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9782-6647</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sensors and actuators <Lausanne> / B</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">346</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710358</subfield><subfield code="w">(DE-600)1500731-5</subfield><subfield code="w">(DE-576)082435855</subfield><subfield code="x">0925-4005</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">346</subfield></datafield></record></collection>
|
author |
Cao, Yuping |
spellingShingle |
Cao, Yuping ddc 530 bkl 50.22 bkl 35.07 misc Covalent organic frameworks misc Fluorescence quantum yield misc Ratiometric sensor misc Isoniazid metabolism misc Hydrazine Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell |
authorStr |
Cao, Yuping |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306710358 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0925-4005 |
topic_title |
530 620 DE-600 50.22 bkl 35.07 bkl Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell Covalent organic frameworks Fluorescence quantum yield Ratiometric sensor Isoniazid metabolism Hydrazine |
topic |
ddc 530 bkl 50.22 bkl 35.07 misc Covalent organic frameworks misc Fluorescence quantum yield misc Ratiometric sensor misc Isoniazid metabolism misc Hydrazine |
topic_unstemmed |
ddc 530 bkl 50.22 bkl 35.07 misc Covalent organic frameworks misc Fluorescence quantum yield misc Ratiometric sensor misc Isoniazid metabolism misc Hydrazine |
topic_browse |
ddc 530 bkl 50.22 bkl 35.07 misc Covalent organic frameworks misc Fluorescence quantum yield misc Ratiometric sensor misc Isoniazid metabolism misc Hydrazine |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors and actuators <Lausanne> / B |
hierarchy_parent_id |
306710358 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Sensors and actuators <Lausanne> / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306710358 (DE-600)1500731-5 (DE-576)082435855 |
title |
Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell |
ctrlnum |
(DE-627)ELV00653662X (ELSEVIER)S0925-4005(21)01040-6 |
title_full |
Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell |
author_sort |
Cao, Yuping |
journal |
Sensors and actuators <Lausanne> / B |
journalStr |
Sensors and actuators <Lausanne> / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Cao, Yuping Zhang, Liang Yang, Jilu Zhang, Jin Si, Wenbo Wang, Jiemin Iqbal, Anam Qin, Wenwu Liu, Yun |
container_volume |
346 |
class |
530 620 DE-600 50.22 bkl 35.07 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cao, Yuping |
doi_str_mv |
10.1016/j.snb.2021.130472 |
normlink |
(ORCID)0000-0002-9782-6647 |
normlink_prefix_str_mv |
(orcid)0000-0002-9782-6647 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell |
title_auth |
Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell |
abstract |
Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-AC was grafted by refluxing in acetic anhydride. TzDha-AC shows higher relative fluorescence quantum yield (Φf) in various organic solvents and water, which is approximately 1.35 to 5.31 times to TzDha. What’s more surprising, TzDha-AC shows excellent ratiometric effect when it is used to detecte hydrazine (N2H4). Detection mechanism is attributed to that hydrazine prevents the intramolecular charge transfer (ICT) from benzene ring to triazine ring of TzDha-AC, thus the emission blue shifted from 601 nm to 526 nm. The detection limit (DL) of N2H4 is calculated to be 0.038 mM in the linear range of 0−10 mM. In addition, we also use TzDha-AC to detecte hydrazine produced from isoniazid metabolism in mouse liver cells and find that TzDha-AC could be a new material employed for simple isoniazid metabolism in cell. |
abstractGer |
Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-AC was grafted by refluxing in acetic anhydride. TzDha-AC shows higher relative fluorescence quantum yield (Φf) in various organic solvents and water, which is approximately 1.35 to 5.31 times to TzDha. What’s more surprising, TzDha-AC shows excellent ratiometric effect when it is used to detecte hydrazine (N2H4). Detection mechanism is attributed to that hydrazine prevents the intramolecular charge transfer (ICT) from benzene ring to triazine ring of TzDha-AC, thus the emission blue shifted from 601 nm to 526 nm. The detection limit (DL) of N2H4 is calculated to be 0.038 mM in the linear range of 0−10 mM. In addition, we also use TzDha-AC to detecte hydrazine produced from isoniazid metabolism in mouse liver cells and find that TzDha-AC could be a new material employed for simple isoniazid metabolism in cell. |
abstract_unstemmed |
Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-AC was grafted by refluxing in acetic anhydride. TzDha-AC shows higher relative fluorescence quantum yield (Φf) in various organic solvents and water, which is approximately 1.35 to 5.31 times to TzDha. What’s more surprising, TzDha-AC shows excellent ratiometric effect when it is used to detecte hydrazine (N2H4). Detection mechanism is attributed to that hydrazine prevents the intramolecular charge transfer (ICT) from benzene ring to triazine ring of TzDha-AC, thus the emission blue shifted from 601 nm to 526 nm. The detection limit (DL) of N2H4 is calculated to be 0.038 mM in the linear range of 0−10 mM. In addition, we also use TzDha-AC to detecte hydrazine produced from isoniazid metabolism in mouse liver cells and find that TzDha-AC could be a new material employed for simple isoniazid metabolism in cell. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell |
remote_bool |
true |
author2 |
Zhang, Liang Yang, Jilu Zhang, Jin Si, Wenbo Wang, Jiemin Iqbal, Anam Qin, Wenwu Liu, Yun |
author2Str |
Zhang, Liang Yang, Jilu Zhang, Jin Si, Wenbo Wang, Jiemin Iqbal, Anam Qin, Wenwu Liu, Yun |
ppnlink |
306710358 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.snb.2021.130472 |
up_date |
2024-07-06T21:43:05.632Z |
_version_ |
1803867584604405760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00653662X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142253.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.snb.2021.130472</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00653662X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-4005(21)01040-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cao, Yuping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ratiometric covalent organic framework florescence sensor for detecting hydrazine produced from isoniazid metabolism in cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Designing luminescent COFs with high fluorescence quantum yield is always a huge challenge. In this work, we synthesized COF TzDha through Schiff base reaction between 4, 4′, 4′'-(1,3,5-triazine-2,4,6-triyl) trianiline (Tz) and 2,5-dihydroxyterephthalaldehyde (Dha), and post-modified COF TzDha-AC was grafted by refluxing in acetic anhydride. TzDha-AC shows higher relative fluorescence quantum yield (Φf) in various organic solvents and water, which is approximately 1.35 to 5.31 times to TzDha. What’s more surprising, TzDha-AC shows excellent ratiometric effect when it is used to detecte hydrazine (N2H4). Detection mechanism is attributed to that hydrazine prevents the intramolecular charge transfer (ICT) from benzene ring to triazine ring of TzDha-AC, thus the emission blue shifted from 601 nm to 526 nm. The detection limit (DL) of N2H4 is calculated to be 0.038 mM in the linear range of 0−10 mM. In addition, we also use TzDha-AC to detecte hydrazine produced from isoniazid metabolism in mouse liver cells and find that TzDha-AC could be a new material employed for simple isoniazid metabolism in cell.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Covalent organic frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescence quantum yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ratiometric sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isoniazid metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrazine</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jilu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Si, Wenbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiemin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iqbal, Anam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Wenwu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9782-6647</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sensors and actuators <Lausanne> / B</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">346</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710358</subfield><subfield code="w">(DE-600)1500731-5</subfield><subfield code="w">(DE-576)082435855</subfield><subfield code="x">0925-4005</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">346</subfield></datafield></record></collection>
|
score |
7.401434 |