An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement
Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban res...
Ausführliche Beschreibung
Autor*in: |
Chao, Xiangrui [verfasserIn] Kou, Gang [verfasserIn] Peng, Yi [verfasserIn] Herrera-Viedma, Enrique [verfasserIn] Herrera, Francisco [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Information sciences - New York, NY : Elsevier Science Inc., 1968, 575, Seite 499-527 |
---|---|
Übergeordnetes Werk: |
volume:575 ; pages:499-527 |
DOI / URN: |
10.1016/j.ins.2021.06.047 |
---|
Katalog-ID: |
ELV006594328 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006594328 | ||
003 | DE-627 | ||
005 | 20230524132221.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ins.2021.06.047 |2 doi | |
035 | |a (DE-627)ELV006594328 | ||
035 | |a (ELSEVIER)S0020-0255(21)00638-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q DE-600 |
084 | |a LING |q DE-30 |2 fid | ||
084 | |a 54.00 |2 bkl | ||
084 | |a 53.71 |2 bkl | ||
100 | 1 | |a Chao, Xiangrui |e verfasserin |4 aut | |
245 | 1 | 0 | |a An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban resettlement is a typical large-scale group decision-making (GDM) problem, which is challenging because of the scale of participants and the requirement of high consensus levels. Observing that residents who are affected by a resettlement project often have tight social connections, this study proposes a framework to improve the consensus reaching and uses the minimum consensus cost to reduce the total cost for urban resettlement projects with more than 1000 participants. Firstly, we construct a network topology that consists of two layers to deal with incomplete social relationships amongst large-scale participants. An inner layer consists of participants whose preference similarities and trust relations are known. Meanwhile, an outside layer includes participants whose trust relations cannot be determined. Secondly, we develop a classification method to classify participants into small subgroups based on their preference similarities. We can then connect the participants whose trust relations are unknown (the outside layer) with the ones in the inner layer using the classification results. To facilitate effective consensus reaching in large-scale social network GDM, we develop a three-step approach to reconcile conflicting preferences and accelerate the consensus process at the minimum cost. A real-life urban resettlement example is used to validate the proposed approach. Results show that the proposed approach can reduce the total consensus cost compared with the other two practices used in the actual urban resettlement operations. | ||
650 | 4 | |a Large-scale decision-making | |
650 | 4 | |a Consensus reaching | |
650 | 4 | |a Dual social network | |
650 | 4 | |a Preference classification | |
650 | 4 | |a Minimum consensus cost | |
700 | 1 | |a Kou, Gang |e verfasserin |4 aut | |
700 | 1 | |a Peng, Yi |e verfasserin |4 aut | |
700 | 1 | |a Herrera-Viedma, Enrique |e verfasserin |4 aut | |
700 | 1 | |a Herrera, Francisco |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Information sciences |d New York, NY : Elsevier Science Inc., 1968 |g 575, Seite 499-527 |h Online-Ressource |w (DE-627)271175850 |w (DE-600)1478990-5 |w (DE-576)078412293 |x 0020-0255 |7 nnns |
773 | 1 | 8 | |g volume:575 |g pages:499-527 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a FID-LING | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.00 |j Informatik: Allgemeines |
936 | b | k | |a 53.71 |j Theoretische Nachrichtentechnik |
951 | |a AR | ||
952 | |d 575 |h 499-527 |
author_variant |
x c xc g k gk y p yp e h v ehv f h fh |
---|---|
matchkey_str |
article:00200255:2021----::nfiincnessecigrmwrfragsaeoilewrgopeiinaigni |
hierarchy_sort_str |
2021 |
bklnumber |
54.00 53.71 |
publishDate |
2021 |
allfields |
10.1016/j.ins.2021.06.047 doi (DE-627)ELV006594328 (ELSEVIER)S0020-0255(21)00638-1 DE-627 ger DE-627 rda eng 070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl Chao, Xiangrui verfasserin aut An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban resettlement is a typical large-scale group decision-making (GDM) problem, which is challenging because of the scale of participants and the requirement of high consensus levels. Observing that residents who are affected by a resettlement project often have tight social connections, this study proposes a framework to improve the consensus reaching and uses the minimum consensus cost to reduce the total cost for urban resettlement projects with more than 1000 participants. Firstly, we construct a network topology that consists of two layers to deal with incomplete social relationships amongst large-scale participants. An inner layer consists of participants whose preference similarities and trust relations are known. Meanwhile, an outside layer includes participants whose trust relations cannot be determined. Secondly, we develop a classification method to classify participants into small subgroups based on their preference similarities. We can then connect the participants whose trust relations are unknown (the outside layer) with the ones in the inner layer using the classification results. To facilitate effective consensus reaching in large-scale social network GDM, we develop a three-step approach to reconcile conflicting preferences and accelerate the consensus process at the minimum cost. A real-life urban resettlement example is used to validate the proposed approach. Results show that the proposed approach can reduce the total consensus cost compared with the other two practices used in the actual urban resettlement operations. Large-scale decision-making Consensus reaching Dual social network Preference classification Minimum consensus cost Kou, Gang verfasserin aut Peng, Yi verfasserin aut Herrera-Viedma, Enrique verfasserin aut Herrera, Francisco verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 575, Seite 499-527 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:575 pages:499-527 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines 53.71 Theoretische Nachrichtentechnik AR 575 499-527 |
spelling |
10.1016/j.ins.2021.06.047 doi (DE-627)ELV006594328 (ELSEVIER)S0020-0255(21)00638-1 DE-627 ger DE-627 rda eng 070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl Chao, Xiangrui verfasserin aut An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban resettlement is a typical large-scale group decision-making (GDM) problem, which is challenging because of the scale of participants and the requirement of high consensus levels. Observing that residents who are affected by a resettlement project often have tight social connections, this study proposes a framework to improve the consensus reaching and uses the minimum consensus cost to reduce the total cost for urban resettlement projects with more than 1000 participants. Firstly, we construct a network topology that consists of two layers to deal with incomplete social relationships amongst large-scale participants. An inner layer consists of participants whose preference similarities and trust relations are known. Meanwhile, an outside layer includes participants whose trust relations cannot be determined. Secondly, we develop a classification method to classify participants into small subgroups based on their preference similarities. We can then connect the participants whose trust relations are unknown (the outside layer) with the ones in the inner layer using the classification results. To facilitate effective consensus reaching in large-scale social network GDM, we develop a three-step approach to reconcile conflicting preferences and accelerate the consensus process at the minimum cost. A real-life urban resettlement example is used to validate the proposed approach. Results show that the proposed approach can reduce the total consensus cost compared with the other two practices used in the actual urban resettlement operations. Large-scale decision-making Consensus reaching Dual social network Preference classification Minimum consensus cost Kou, Gang verfasserin aut Peng, Yi verfasserin aut Herrera-Viedma, Enrique verfasserin aut Herrera, Francisco verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 575, Seite 499-527 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:575 pages:499-527 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines 53.71 Theoretische Nachrichtentechnik AR 575 499-527 |
allfields_unstemmed |
10.1016/j.ins.2021.06.047 doi (DE-627)ELV006594328 (ELSEVIER)S0020-0255(21)00638-1 DE-627 ger DE-627 rda eng 070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl Chao, Xiangrui verfasserin aut An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban resettlement is a typical large-scale group decision-making (GDM) problem, which is challenging because of the scale of participants and the requirement of high consensus levels. Observing that residents who are affected by a resettlement project often have tight social connections, this study proposes a framework to improve the consensus reaching and uses the minimum consensus cost to reduce the total cost for urban resettlement projects with more than 1000 participants. Firstly, we construct a network topology that consists of two layers to deal with incomplete social relationships amongst large-scale participants. An inner layer consists of participants whose preference similarities and trust relations are known. Meanwhile, an outside layer includes participants whose trust relations cannot be determined. Secondly, we develop a classification method to classify participants into small subgroups based on their preference similarities. We can then connect the participants whose trust relations are unknown (the outside layer) with the ones in the inner layer using the classification results. To facilitate effective consensus reaching in large-scale social network GDM, we develop a three-step approach to reconcile conflicting preferences and accelerate the consensus process at the minimum cost. A real-life urban resettlement example is used to validate the proposed approach. Results show that the proposed approach can reduce the total consensus cost compared with the other two practices used in the actual urban resettlement operations. Large-scale decision-making Consensus reaching Dual social network Preference classification Minimum consensus cost Kou, Gang verfasserin aut Peng, Yi verfasserin aut Herrera-Viedma, Enrique verfasserin aut Herrera, Francisco verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 575, Seite 499-527 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:575 pages:499-527 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines 53.71 Theoretische Nachrichtentechnik AR 575 499-527 |
allfieldsGer |
10.1016/j.ins.2021.06.047 doi (DE-627)ELV006594328 (ELSEVIER)S0020-0255(21)00638-1 DE-627 ger DE-627 rda eng 070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl Chao, Xiangrui verfasserin aut An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban resettlement is a typical large-scale group decision-making (GDM) problem, which is challenging because of the scale of participants and the requirement of high consensus levels. Observing that residents who are affected by a resettlement project often have tight social connections, this study proposes a framework to improve the consensus reaching and uses the minimum consensus cost to reduce the total cost for urban resettlement projects with more than 1000 participants. Firstly, we construct a network topology that consists of two layers to deal with incomplete social relationships amongst large-scale participants. An inner layer consists of participants whose preference similarities and trust relations are known. Meanwhile, an outside layer includes participants whose trust relations cannot be determined. Secondly, we develop a classification method to classify participants into small subgroups based on their preference similarities. We can then connect the participants whose trust relations are unknown (the outside layer) with the ones in the inner layer using the classification results. To facilitate effective consensus reaching in large-scale social network GDM, we develop a three-step approach to reconcile conflicting preferences and accelerate the consensus process at the minimum cost. A real-life urban resettlement example is used to validate the proposed approach. Results show that the proposed approach can reduce the total consensus cost compared with the other two practices used in the actual urban resettlement operations. Large-scale decision-making Consensus reaching Dual social network Preference classification Minimum consensus cost Kou, Gang verfasserin aut Peng, Yi verfasserin aut Herrera-Viedma, Enrique verfasserin aut Herrera, Francisco verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 575, Seite 499-527 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:575 pages:499-527 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines 53.71 Theoretische Nachrichtentechnik AR 575 499-527 |
allfieldsSound |
10.1016/j.ins.2021.06.047 doi (DE-627)ELV006594328 (ELSEVIER)S0020-0255(21)00638-1 DE-627 ger DE-627 rda eng 070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl Chao, Xiangrui verfasserin aut An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban resettlement is a typical large-scale group decision-making (GDM) problem, which is challenging because of the scale of participants and the requirement of high consensus levels. Observing that residents who are affected by a resettlement project often have tight social connections, this study proposes a framework to improve the consensus reaching and uses the minimum consensus cost to reduce the total cost for urban resettlement projects with more than 1000 participants. Firstly, we construct a network topology that consists of two layers to deal with incomplete social relationships amongst large-scale participants. An inner layer consists of participants whose preference similarities and trust relations are known. Meanwhile, an outside layer includes participants whose trust relations cannot be determined. Secondly, we develop a classification method to classify participants into small subgroups based on their preference similarities. We can then connect the participants whose trust relations are unknown (the outside layer) with the ones in the inner layer using the classification results. To facilitate effective consensus reaching in large-scale social network GDM, we develop a three-step approach to reconcile conflicting preferences and accelerate the consensus process at the minimum cost. A real-life urban resettlement example is used to validate the proposed approach. Results show that the proposed approach can reduce the total consensus cost compared with the other two practices used in the actual urban resettlement operations. Large-scale decision-making Consensus reaching Dual social network Preference classification Minimum consensus cost Kou, Gang verfasserin aut Peng, Yi verfasserin aut Herrera-Viedma, Enrique verfasserin aut Herrera, Francisco verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 575, Seite 499-527 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:575 pages:499-527 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines 53.71 Theoretische Nachrichtentechnik AR 575 499-527 |
language |
English |
source |
Enthalten in Information sciences 575, Seite 499-527 volume:575 pages:499-527 |
sourceStr |
Enthalten in Information sciences 575, Seite 499-527 volume:575 pages:499-527 |
format_phy_str_mv |
Article |
bklname |
Informatik: Allgemeines Theoretische Nachrichtentechnik |
institution |
findex.gbv.de |
topic_facet |
Large-scale decision-making Consensus reaching Dual social network Preference classification Minimum consensus cost |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Information sciences |
authorswithroles_txt_mv |
Chao, Xiangrui @@aut@@ Kou, Gang @@aut@@ Peng, Yi @@aut@@ Herrera-Viedma, Enrique @@aut@@ Herrera, Francisco @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
271175850 |
dewey-sort |
270 |
id |
ELV006594328 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006594328</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ins.2021.06.047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006594328</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-0255(21)00638-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.71</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chao, Xiangrui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban resettlement is a typical large-scale group decision-making (GDM) problem, which is challenging because of the scale of participants and the requirement of high consensus levels. Observing that residents who are affected by a resettlement project often have tight social connections, this study proposes a framework to improve the consensus reaching and uses the minimum consensus cost to reduce the total cost for urban resettlement projects with more than 1000 participants. Firstly, we construct a network topology that consists of two layers to deal with incomplete social relationships amongst large-scale participants. An inner layer consists of participants whose preference similarities and trust relations are known. Meanwhile, an outside layer includes participants whose trust relations cannot be determined. Secondly, we develop a classification method to classify participants into small subgroups based on their preference similarities. We can then connect the participants whose trust relations are unknown (the outside layer) with the ones in the inner layer using the classification results. To facilitate effective consensus reaching in large-scale social network GDM, we develop a three-step approach to reconcile conflicting preferences and accelerate the consensus process at the minimum cost. A real-life urban resettlement example is used to validate the proposed approach. Results show that the proposed approach can reduce the total consensus cost compared with the other two practices used in the actual urban resettlement operations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large-scale decision-making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Consensus reaching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual social network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Preference classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum consensus cost</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kou, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herrera-Viedma, Enrique</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herrera, Francisco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Information sciences</subfield><subfield code="d">New York, NY : Elsevier Science Inc., 1968</subfield><subfield code="g">575, Seite 499-527</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271175850</subfield><subfield code="w">(DE-600)1478990-5</subfield><subfield code="w">(DE-576)078412293</subfield><subfield code="x">0020-0255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:575</subfield><subfield code="g">pages:499-527</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.71</subfield><subfield code="j">Theoretische Nachrichtentechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">575</subfield><subfield code="h">499-527</subfield></datafield></record></collection>
|
author |
Chao, Xiangrui |
spellingShingle |
Chao, Xiangrui ddc 070 fid LING bkl 54.00 bkl 53.71 misc Large-scale decision-making misc Consensus reaching misc Dual social network misc Preference classification misc Minimum consensus cost An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement |
authorStr |
Chao, Xiangrui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271175850 |
format |
electronic Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0020-0255 |
topic_title |
070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement Large-scale decision-making Consensus reaching Dual social network Preference classification Minimum consensus cost |
topic |
ddc 070 fid LING bkl 54.00 bkl 53.71 misc Large-scale decision-making misc Consensus reaching misc Dual social network misc Preference classification misc Minimum consensus cost |
topic_unstemmed |
ddc 070 fid LING bkl 54.00 bkl 53.71 misc Large-scale decision-making misc Consensus reaching misc Dual social network misc Preference classification misc Minimum consensus cost |
topic_browse |
ddc 070 fid LING bkl 54.00 bkl 53.71 misc Large-scale decision-making misc Consensus reaching misc Dual social network misc Preference classification misc Minimum consensus cost |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Information sciences |
hierarchy_parent_id |
271175850 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Information sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 |
title |
An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement |
ctrlnum |
(DE-627)ELV006594328 (ELSEVIER)S0020-0255(21)00638-1 |
title_full |
An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement |
author_sort |
Chao, Xiangrui |
journal |
Information sciences |
journalStr |
Information sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
499 |
author_browse |
Chao, Xiangrui Kou, Gang Peng, Yi Herrera-Viedma, Enrique Herrera, Francisco |
container_volume |
575 |
class |
070 004 DE-600 LING DE-30 fid 54.00 bkl 53.71 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chao, Xiangrui |
doi_str_mv |
10.1016/j.ins.2021.06.047 |
dewey-full |
070 004 |
author2-role |
verfasserin |
title_sort |
an efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement |
title_auth |
An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement |
abstract |
Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban resettlement is a typical large-scale group decision-making (GDM) problem, which is challenging because of the scale of participants and the requirement of high consensus levels. Observing that residents who are affected by a resettlement project often have tight social connections, this study proposes a framework to improve the consensus reaching and uses the minimum consensus cost to reduce the total cost for urban resettlement projects with more than 1000 participants. Firstly, we construct a network topology that consists of two layers to deal with incomplete social relationships amongst large-scale participants. An inner layer consists of participants whose preference similarities and trust relations are known. Meanwhile, an outside layer includes participants whose trust relations cannot be determined. Secondly, we develop a classification method to classify participants into small subgroups based on their preference similarities. We can then connect the participants whose trust relations are unknown (the outside layer) with the ones in the inner layer using the classification results. To facilitate effective consensus reaching in large-scale social network GDM, we develop a three-step approach to reconcile conflicting preferences and accelerate the consensus process at the minimum cost. A real-life urban resettlement example is used to validate the proposed approach. Results show that the proposed approach can reduce the total consensus cost compared with the other two practices used in the actual urban resettlement operations. |
abstractGer |
Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban resettlement is a typical large-scale group decision-making (GDM) problem, which is challenging because of the scale of participants and the requirement of high consensus levels. Observing that residents who are affected by a resettlement project often have tight social connections, this study proposes a framework to improve the consensus reaching and uses the minimum consensus cost to reduce the total cost for urban resettlement projects with more than 1000 participants. Firstly, we construct a network topology that consists of two layers to deal with incomplete social relationships amongst large-scale participants. An inner layer consists of participants whose preference similarities and trust relations are known. Meanwhile, an outside layer includes participants whose trust relations cannot be determined. Secondly, we develop a classification method to classify participants into small subgroups based on their preference similarities. We can then connect the participants whose trust relations are unknown (the outside layer) with the ones in the inner layer using the classification results. To facilitate effective consensus reaching in large-scale social network GDM, we develop a three-step approach to reconcile conflicting preferences and accelerate the consensus process at the minimum cost. A real-life urban resettlement example is used to validate the proposed approach. Results show that the proposed approach can reduce the total consensus cost compared with the other two practices used in the actual urban resettlement operations. |
abstract_unstemmed |
Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban resettlement is a typical large-scale group decision-making (GDM) problem, which is challenging because of the scale of participants and the requirement of high consensus levels. Observing that residents who are affected by a resettlement project often have tight social connections, this study proposes a framework to improve the consensus reaching and uses the minimum consensus cost to reduce the total cost for urban resettlement projects with more than 1000 participants. Firstly, we construct a network topology that consists of two layers to deal with incomplete social relationships amongst large-scale participants. An inner layer consists of participants whose preference similarities and trust relations are known. Meanwhile, an outside layer includes participants whose trust relations cannot be determined. Secondly, we develop a classification method to classify participants into small subgroups based on their preference similarities. We can then connect the participants whose trust relations are unknown (the outside layer) with the ones in the inner layer using the classification results. To facilitate effective consensus reaching in large-scale social network GDM, we develop a three-step approach to reconcile conflicting preferences and accelerate the consensus process at the minimum cost. A real-life urban resettlement example is used to validate the proposed approach. Results show that the proposed approach can reduce the total consensus cost compared with the other two practices used in the actual urban resettlement operations. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement |
remote_bool |
true |
author2 |
Kou, Gang Peng, Yi Herrera-Viedma, Enrique Herrera, Francisco |
author2Str |
Kou, Gang Peng, Yi Herrera-Viedma, Enrique Herrera, Francisco |
ppnlink |
271175850 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ins.2021.06.047 |
up_date |
2024-07-06T21:54:47.935Z |
_version_ |
1803868321021427712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006594328</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ins.2021.06.047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006594328</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-0255(21)00638-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.71</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chao, Xiangrui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An efficient consensus reaching framework for large-scale social network group decision making and its application in urban resettlement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Urban resettlement projects involve a large number of stakeholders and impose tremendous cost. Developing resettlement plans and reaching an agreement amongst stakeholders about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. From this perspective, urban resettlement is a typical large-scale group decision-making (GDM) problem, which is challenging because of the scale of participants and the requirement of high consensus levels. Observing that residents who are affected by a resettlement project often have tight social connections, this study proposes a framework to improve the consensus reaching and uses the minimum consensus cost to reduce the total cost for urban resettlement projects with more than 1000 participants. Firstly, we construct a network topology that consists of two layers to deal with incomplete social relationships amongst large-scale participants. An inner layer consists of participants whose preference similarities and trust relations are known. Meanwhile, an outside layer includes participants whose trust relations cannot be determined. Secondly, we develop a classification method to classify participants into small subgroups based on their preference similarities. We can then connect the participants whose trust relations are unknown (the outside layer) with the ones in the inner layer using the classification results. To facilitate effective consensus reaching in large-scale social network GDM, we develop a three-step approach to reconcile conflicting preferences and accelerate the consensus process at the minimum cost. A real-life urban resettlement example is used to validate the proposed approach. Results show that the proposed approach can reduce the total consensus cost compared with the other two practices used in the actual urban resettlement operations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large-scale decision-making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Consensus reaching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual social network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Preference classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum consensus cost</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kou, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herrera-Viedma, Enrique</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herrera, Francisco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Information sciences</subfield><subfield code="d">New York, NY : Elsevier Science Inc., 1968</subfield><subfield code="g">575, Seite 499-527</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271175850</subfield><subfield code="w">(DE-600)1478990-5</subfield><subfield code="w">(DE-576)078412293</subfield><subfield code="x">0020-0255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:575</subfield><subfield code="g">pages:499-527</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.71</subfield><subfield code="j">Theoretische Nachrichtentechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">575</subfield><subfield code="h">499-527</subfield></datafield></record></collection>
|
score |
7.4020987 |