Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation
Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its signi...
Ausführliche Beschreibung
Autor*in: |
Zhang, Muxing [verfasserIn] Zhang, Xiaosong [verfasserIn] Guo, Siyi [verfasserIn] Xu, Xiaodong [verfasserIn] Chen, Jiayu [verfasserIn] Wang, Wei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Sustainable cities and society - Amsterdam [u.a.] : Elsevier, 2011, 74 |
---|---|
Übergeordnetes Werk: |
volume:74 |
DOI / URN: |
10.1016/j.scs.2021.103227 |
---|
Katalog-ID: |
ELV006617085 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006617085 | ||
003 | DE-627 | ||
005 | 20230524122655.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.scs.2021.103227 |2 doi | |
035 | |a (DE-627)ELV006617085 | ||
035 | |a (ELSEVIER)S2210-6707(21)00505-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |a 720 |q DE-600 |
100 | 1 | |a Zhang, Muxing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its significance in the building energy analysis. The one-day-period-ahead prediction results demonstrated approving performance that the average RMSE of predicted on-site temperature is 0.75 °C, corresponding to 4.11% in MAPE while RMSEs of EPW data (the common embedded datasets representative of the typical meteorological year) and suburban meteorological station data are 5.23 °C and 5.18 °C, respectively; the similar applied to relative humidity and solar radiation. The predicted meteorological parameters were therefore passed into building energy estimation models. The comparisons of energy consumption for building heating and cooling against reference models with suburban station climates and EPW datasets are statistically investigated, with the underlying propagation of bias from meteorological inputs being analyzed. For the typical building where the micro-climate station located, the estimation biases are as follows (i) LSTM predicted datasets: Δ = -1.58% for cooling, Δ = -2.51% for heating; (ii) EPW climate datasets: Δ = -29.68% for cooling, Δ = +129.88% for heating; (iii) suburban station climate datasets: Δ = -5.1% for cooling, Δ = +235.95% for heating. | ||
650 | 4 | |a Urban micro-climate | |
650 | 4 | |a Long short-term memory | |
650 | 4 | |a Meteorological prediction | |
650 | 4 | |a Building energy estimation | |
700 | 1 | |a Zhang, Xiaosong |e verfasserin |4 aut | |
700 | 1 | |a Guo, Siyi |e verfasserin |4 aut | |
700 | 1 | |a Xu, Xiaodong |e verfasserin |4 aut | |
700 | 1 | |a Chen, Jiayu |e verfasserin |4 aut | |
700 | 1 | |a Wang, Wei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Sustainable cities and society |d Amsterdam [u.a.] : Elsevier, 2011 |g 74 |h Online-Ressource |w (DE-627)635602792 |w (DE-600)2573417-9 |w (DE-576)336956703 |7 nnns |
773 | 1 | 8 | |g volume:74 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
951 | |a AR | ||
952 | |d 74 |
author_variant |
m z mz x z xz s g sg x x xx j c jc w w ww |
---|---|
matchkey_str |
zhangmuxingzhangxiaosongguosiyixuxiaodon:2021----:ramcolmtpeitotruhoghrtrmmrntokihogemoioigo |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1016/j.scs.2021.103227 doi (DE-627)ELV006617085 (ELSEVIER)S2210-6707(21)00505-9 DE-627 ger DE-627 rda eng 690 720 DE-600 Zhang, Muxing verfasserin aut Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its significance in the building energy analysis. The one-day-period-ahead prediction results demonstrated approving performance that the average RMSE of predicted on-site temperature is 0.75 °C, corresponding to 4.11% in MAPE while RMSEs of EPW data (the common embedded datasets representative of the typical meteorological year) and suburban meteorological station data are 5.23 °C and 5.18 °C, respectively; the similar applied to relative humidity and solar radiation. The predicted meteorological parameters were therefore passed into building energy estimation models. The comparisons of energy consumption for building heating and cooling against reference models with suburban station climates and EPW datasets are statistically investigated, with the underlying propagation of bias from meteorological inputs being analyzed. For the typical building where the micro-climate station located, the estimation biases are as follows (i) LSTM predicted datasets: Δ = -1.58% for cooling, Δ = -2.51% for heating; (ii) EPW climate datasets: Δ = -29.68% for cooling, Δ = +129.88% for heating; (iii) suburban station climate datasets: Δ = -5.1% for cooling, Δ = +235.95% for heating. Urban micro-climate Long short-term memory Meteorological prediction Building energy estimation Zhang, Xiaosong verfasserin aut Guo, Siyi verfasserin aut Xu, Xiaodong verfasserin aut Chen, Jiayu verfasserin aut Wang, Wei verfasserin aut Enthalten in Sustainable cities and society Amsterdam [u.a.] : Elsevier, 2011 74 Online-Ressource (DE-627)635602792 (DE-600)2573417-9 (DE-576)336956703 nnns volume:74 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 74 |
spelling |
10.1016/j.scs.2021.103227 doi (DE-627)ELV006617085 (ELSEVIER)S2210-6707(21)00505-9 DE-627 ger DE-627 rda eng 690 720 DE-600 Zhang, Muxing verfasserin aut Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its significance in the building energy analysis. The one-day-period-ahead prediction results demonstrated approving performance that the average RMSE of predicted on-site temperature is 0.75 °C, corresponding to 4.11% in MAPE while RMSEs of EPW data (the common embedded datasets representative of the typical meteorological year) and suburban meteorological station data are 5.23 °C and 5.18 °C, respectively; the similar applied to relative humidity and solar radiation. The predicted meteorological parameters were therefore passed into building energy estimation models. The comparisons of energy consumption for building heating and cooling against reference models with suburban station climates and EPW datasets are statistically investigated, with the underlying propagation of bias from meteorological inputs being analyzed. For the typical building where the micro-climate station located, the estimation biases are as follows (i) LSTM predicted datasets: Δ = -1.58% for cooling, Δ = -2.51% for heating; (ii) EPW climate datasets: Δ = -29.68% for cooling, Δ = +129.88% for heating; (iii) suburban station climate datasets: Δ = -5.1% for cooling, Δ = +235.95% for heating. Urban micro-climate Long short-term memory Meteorological prediction Building energy estimation Zhang, Xiaosong verfasserin aut Guo, Siyi verfasserin aut Xu, Xiaodong verfasserin aut Chen, Jiayu verfasserin aut Wang, Wei verfasserin aut Enthalten in Sustainable cities and society Amsterdam [u.a.] : Elsevier, 2011 74 Online-Ressource (DE-627)635602792 (DE-600)2573417-9 (DE-576)336956703 nnns volume:74 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 74 |
allfields_unstemmed |
10.1016/j.scs.2021.103227 doi (DE-627)ELV006617085 (ELSEVIER)S2210-6707(21)00505-9 DE-627 ger DE-627 rda eng 690 720 DE-600 Zhang, Muxing verfasserin aut Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its significance in the building energy analysis. The one-day-period-ahead prediction results demonstrated approving performance that the average RMSE of predicted on-site temperature is 0.75 °C, corresponding to 4.11% in MAPE while RMSEs of EPW data (the common embedded datasets representative of the typical meteorological year) and suburban meteorological station data are 5.23 °C and 5.18 °C, respectively; the similar applied to relative humidity and solar radiation. The predicted meteorological parameters were therefore passed into building energy estimation models. The comparisons of energy consumption for building heating and cooling against reference models with suburban station climates and EPW datasets are statistically investigated, with the underlying propagation of bias from meteorological inputs being analyzed. For the typical building where the micro-climate station located, the estimation biases are as follows (i) LSTM predicted datasets: Δ = -1.58% for cooling, Δ = -2.51% for heating; (ii) EPW climate datasets: Δ = -29.68% for cooling, Δ = +129.88% for heating; (iii) suburban station climate datasets: Δ = -5.1% for cooling, Δ = +235.95% for heating. Urban micro-climate Long short-term memory Meteorological prediction Building energy estimation Zhang, Xiaosong verfasserin aut Guo, Siyi verfasserin aut Xu, Xiaodong verfasserin aut Chen, Jiayu verfasserin aut Wang, Wei verfasserin aut Enthalten in Sustainable cities and society Amsterdam [u.a.] : Elsevier, 2011 74 Online-Ressource (DE-627)635602792 (DE-600)2573417-9 (DE-576)336956703 nnns volume:74 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 74 |
allfieldsGer |
10.1016/j.scs.2021.103227 doi (DE-627)ELV006617085 (ELSEVIER)S2210-6707(21)00505-9 DE-627 ger DE-627 rda eng 690 720 DE-600 Zhang, Muxing verfasserin aut Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its significance in the building energy analysis. The one-day-period-ahead prediction results demonstrated approving performance that the average RMSE of predicted on-site temperature is 0.75 °C, corresponding to 4.11% in MAPE while RMSEs of EPW data (the common embedded datasets representative of the typical meteorological year) and suburban meteorological station data are 5.23 °C and 5.18 °C, respectively; the similar applied to relative humidity and solar radiation. The predicted meteorological parameters were therefore passed into building energy estimation models. The comparisons of energy consumption for building heating and cooling against reference models with suburban station climates and EPW datasets are statistically investigated, with the underlying propagation of bias from meteorological inputs being analyzed. For the typical building where the micro-climate station located, the estimation biases are as follows (i) LSTM predicted datasets: Δ = -1.58% for cooling, Δ = -2.51% for heating; (ii) EPW climate datasets: Δ = -29.68% for cooling, Δ = +129.88% for heating; (iii) suburban station climate datasets: Δ = -5.1% for cooling, Δ = +235.95% for heating. Urban micro-climate Long short-term memory Meteorological prediction Building energy estimation Zhang, Xiaosong verfasserin aut Guo, Siyi verfasserin aut Xu, Xiaodong verfasserin aut Chen, Jiayu verfasserin aut Wang, Wei verfasserin aut Enthalten in Sustainable cities and society Amsterdam [u.a.] : Elsevier, 2011 74 Online-Ressource (DE-627)635602792 (DE-600)2573417-9 (DE-576)336956703 nnns volume:74 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 74 |
allfieldsSound |
10.1016/j.scs.2021.103227 doi (DE-627)ELV006617085 (ELSEVIER)S2210-6707(21)00505-9 DE-627 ger DE-627 rda eng 690 720 DE-600 Zhang, Muxing verfasserin aut Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its significance in the building energy analysis. The one-day-period-ahead prediction results demonstrated approving performance that the average RMSE of predicted on-site temperature is 0.75 °C, corresponding to 4.11% in MAPE while RMSEs of EPW data (the common embedded datasets representative of the typical meteorological year) and suburban meteorological station data are 5.23 °C and 5.18 °C, respectively; the similar applied to relative humidity and solar radiation. The predicted meteorological parameters were therefore passed into building energy estimation models. The comparisons of energy consumption for building heating and cooling against reference models with suburban station climates and EPW datasets are statistically investigated, with the underlying propagation of bias from meteorological inputs being analyzed. For the typical building where the micro-climate station located, the estimation biases are as follows (i) LSTM predicted datasets: Δ = -1.58% for cooling, Δ = -2.51% for heating; (ii) EPW climate datasets: Δ = -29.68% for cooling, Δ = +129.88% for heating; (iii) suburban station climate datasets: Δ = -5.1% for cooling, Δ = +235.95% for heating. Urban micro-climate Long short-term memory Meteorological prediction Building energy estimation Zhang, Xiaosong verfasserin aut Guo, Siyi verfasserin aut Xu, Xiaodong verfasserin aut Chen, Jiayu verfasserin aut Wang, Wei verfasserin aut Enthalten in Sustainable cities and society Amsterdam [u.a.] : Elsevier, 2011 74 Online-Ressource (DE-627)635602792 (DE-600)2573417-9 (DE-576)336956703 nnns volume:74 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 74 |
language |
English |
source |
Enthalten in Sustainable cities and society 74 volume:74 |
sourceStr |
Enthalten in Sustainable cities and society 74 volume:74 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Urban micro-climate Long short-term memory Meteorological prediction Building energy estimation |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Sustainable cities and society |
authorswithroles_txt_mv |
Zhang, Muxing @@aut@@ Zhang, Xiaosong @@aut@@ Guo, Siyi @@aut@@ Xu, Xiaodong @@aut@@ Chen, Jiayu @@aut@@ Wang, Wei @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
635602792 |
dewey-sort |
3690 |
id |
ELV006617085 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006617085</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524122655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scs.2021.103227</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006617085</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S2210-6707(21)00505-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">720</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Muxing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its significance in the building energy analysis. The one-day-period-ahead prediction results demonstrated approving performance that the average RMSE of predicted on-site temperature is 0.75 °C, corresponding to 4.11% in MAPE while RMSEs of EPW data (the common embedded datasets representative of the typical meteorological year) and suburban meteorological station data are 5.23 °C and 5.18 °C, respectively; the similar applied to relative humidity and solar radiation. The predicted meteorological parameters were therefore passed into building energy estimation models. The comparisons of energy consumption for building heating and cooling against reference models with suburban station climates and EPW datasets are statistically investigated, with the underlying propagation of bias from meteorological inputs being analyzed. For the typical building where the micro-climate station located, the estimation biases are as follows (i) LSTM predicted datasets: Δ = -1.58% for cooling, Δ = -2.51% for heating; (ii) EPW climate datasets: Δ = -29.68% for cooling, Δ = +129.88% for heating; (iii) suburban station climate datasets: Δ = -5.1% for cooling, Δ = +235.95% for heating.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban micro-climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long short-term memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meteorological prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Building energy estimation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaosong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Siyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Xiaodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jiayu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sustainable cities and society</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2011</subfield><subfield code="g">74</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)635602792</subfield><subfield code="w">(DE-600)2573417-9</subfield><subfield code="w">(DE-576)336956703</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield></datafield></record></collection>
|
author |
Zhang, Muxing |
spellingShingle |
Zhang, Muxing ddc 690 misc Urban micro-climate misc Long short-term memory misc Meteorological prediction misc Building energy estimation Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation |
authorStr |
Zhang, Muxing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)635602792 |
format |
electronic Article |
dewey-ones |
690 - Buildings 720 - Architecture |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 720 DE-600 Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation Urban micro-climate Long short-term memory Meteorological prediction Building energy estimation |
topic |
ddc 690 misc Urban micro-climate misc Long short-term memory misc Meteorological prediction misc Building energy estimation |
topic_unstemmed |
ddc 690 misc Urban micro-climate misc Long short-term memory misc Meteorological prediction misc Building energy estimation |
topic_browse |
ddc 690 misc Urban micro-climate misc Long short-term memory misc Meteorological prediction misc Building energy estimation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainable cities and society |
hierarchy_parent_id |
635602792 |
dewey-tens |
690 - Building & construction 720 - Architecture |
hierarchy_top_title |
Sustainable cities and society |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)635602792 (DE-600)2573417-9 (DE-576)336956703 |
title |
Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation |
ctrlnum |
(DE-627)ELV006617085 (ELSEVIER)S2210-6707(21)00505-9 |
title_full |
Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation |
author_sort |
Zhang, Muxing |
journal |
Sustainable cities and society |
journalStr |
Sustainable cities and society |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 700 - Arts & recreation |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Muxing Zhang, Xiaosong Guo, Siyi Xu, Xiaodong Chen, Jiayu Wang, Wei |
container_volume |
74 |
class |
690 720 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Muxing |
doi_str_mv |
10.1016/j.scs.2021.103227 |
dewey-full |
690 720 |
author2-role |
verfasserin |
title_sort |
urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation |
title_auth |
Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation |
abstract |
Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its significance in the building energy analysis. The one-day-period-ahead prediction results demonstrated approving performance that the average RMSE of predicted on-site temperature is 0.75 °C, corresponding to 4.11% in MAPE while RMSEs of EPW data (the common embedded datasets representative of the typical meteorological year) and suburban meteorological station data are 5.23 °C and 5.18 °C, respectively; the similar applied to relative humidity and solar radiation. The predicted meteorological parameters were therefore passed into building energy estimation models. The comparisons of energy consumption for building heating and cooling against reference models with suburban station climates and EPW datasets are statistically investigated, with the underlying propagation of bias from meteorological inputs being analyzed. For the typical building where the micro-climate station located, the estimation biases are as follows (i) LSTM predicted datasets: Δ = -1.58% for cooling, Δ = -2.51% for heating; (ii) EPW climate datasets: Δ = -29.68% for cooling, Δ = +129.88% for heating; (iii) suburban station climate datasets: Δ = -5.1% for cooling, Δ = +235.95% for heating. |
abstractGer |
Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its significance in the building energy analysis. The one-day-period-ahead prediction results demonstrated approving performance that the average RMSE of predicted on-site temperature is 0.75 °C, corresponding to 4.11% in MAPE while RMSEs of EPW data (the common embedded datasets representative of the typical meteorological year) and suburban meteorological station data are 5.23 °C and 5.18 °C, respectively; the similar applied to relative humidity and solar radiation. The predicted meteorological parameters were therefore passed into building energy estimation models. The comparisons of energy consumption for building heating and cooling against reference models with suburban station climates and EPW datasets are statistically investigated, with the underlying propagation of bias from meteorological inputs being analyzed. For the typical building where the micro-climate station located, the estimation biases are as follows (i) LSTM predicted datasets: Δ = -1.58% for cooling, Δ = -2.51% for heating; (ii) EPW climate datasets: Δ = -29.68% for cooling, Δ = +129.88% for heating; (iii) suburban station climate datasets: Δ = -5.1% for cooling, Δ = +235.95% for heating. |
abstract_unstemmed |
Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its significance in the building energy analysis. The one-day-period-ahead prediction results demonstrated approving performance that the average RMSE of predicted on-site temperature is 0.75 °C, corresponding to 4.11% in MAPE while RMSEs of EPW data (the common embedded datasets representative of the typical meteorological year) and suburban meteorological station data are 5.23 °C and 5.18 °C, respectively; the similar applied to relative humidity and solar radiation. The predicted meteorological parameters were therefore passed into building energy estimation models. The comparisons of energy consumption for building heating and cooling against reference models with suburban station climates and EPW datasets are statistically investigated, with the underlying propagation of bias from meteorological inputs being analyzed. For the typical building where the micro-climate station located, the estimation biases are as follows (i) LSTM predicted datasets: Δ = -1.58% for cooling, Δ = -2.51% for heating; (ii) EPW climate datasets: Δ = -29.68% for cooling, Δ = +129.88% for heating; (iii) suburban station climate datasets: Δ = -5.1% for cooling, Δ = +235.95% for heating. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation |
remote_bool |
true |
author2 |
Zhang, Xiaosong Guo, Siyi Xu, Xiaodong Chen, Jiayu Wang, Wei |
author2Str |
Zhang, Xiaosong Guo, Siyi Xu, Xiaodong Chen, Jiayu Wang, Wei |
ppnlink |
635602792 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.scs.2021.103227 |
up_date |
2024-07-06T21:59:16.068Z |
_version_ |
1803868602180304896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006617085</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524122655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scs.2021.103227</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006617085</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S2210-6707(21)00505-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">720</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Muxing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Accurate meteorological data play a substantial role in the building energy estimation process and projected energy savings retrofitting. The present study presents predicted micro-climates parameters with long short-term memory (LSTM) network based on the long-term on-site measurement and its significance in the building energy analysis. The one-day-period-ahead prediction results demonstrated approving performance that the average RMSE of predicted on-site temperature is 0.75 °C, corresponding to 4.11% in MAPE while RMSEs of EPW data (the common embedded datasets representative of the typical meteorological year) and suburban meteorological station data are 5.23 °C and 5.18 °C, respectively; the similar applied to relative humidity and solar radiation. The predicted meteorological parameters were therefore passed into building energy estimation models. The comparisons of energy consumption for building heating and cooling against reference models with suburban station climates and EPW datasets are statistically investigated, with the underlying propagation of bias from meteorological inputs being analyzed. For the typical building where the micro-climate station located, the estimation biases are as follows (i) LSTM predicted datasets: Δ = -1.58% for cooling, Δ = -2.51% for heating; (ii) EPW climate datasets: Δ = -29.68% for cooling, Δ = +129.88% for heating; (iii) suburban station climate datasets: Δ = -5.1% for cooling, Δ = +235.95% for heating.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban micro-climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long short-term memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meteorological prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Building energy estimation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaosong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Siyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Xiaodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jiayu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Sustainable cities and society</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2011</subfield><subfield code="g">74</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)635602792</subfield><subfield code="w">(DE-600)2573417-9</subfield><subfield code="w">(DE-576)336956703</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield></datafield></record></collection>
|
score |
7.402135 |