A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle
The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numeri...
Ausführliche Beschreibung
Autor*in: |
Tas-Koehler, Sibel [verfasserIn] Liao, Yixiang [verfasserIn] Hampel, Uwe [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chemical engineering science - Amsterdam [u.a.] : Elsevier Science, 1951, 246 |
---|---|
Übergeordnetes Werk: |
volume:246 |
DOI / URN: |
10.1016/j.ces.2021.117007 |
---|
Katalog-ID: |
ELV006666469 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006666469 | ||
003 | DE-627 | ||
005 | 20230524135905.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ces.2021.117007 |2 doi | |
035 | |a (DE-627)ELV006666469 | ||
035 | |a (ELSEVIER)S0009-2509(21)00572-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 58.14 |2 bkl | ||
100 | 1 | |a Tas-Koehler, Sibel |e verfasserin |4 aut | |
245 | 1 | 0 | |a A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numerically evaluated several drag models from the literature for high-turbulent gas–liquid flow around an obstacle in a pipe that creates a distinct vortex region. We performed Computational Fluid Dynamics (CFD) simulations and compared the void fraction and gas velocity profiles with experimental data obtained by ultrafast X-ray computed tomography. We found that all models, except Schiller&Naumann and Feng, predicted the void fraction well compared to experimental data upstream of the obstacle, i.e., for a developed two-phase pipe flow with axial symmetry. However, the void fraction downstream is greatly overestimated by all models except those that appropriately consider the turbulence effects. Based on the results, a hybrid drag model is proposed that significantly improves the prediction of the void fraction. | ||
650 | 4 | |a CFD | |
650 | 4 | |a Bubbly flow | |
650 | 4 | |a Drag force coefficient | |
650 | 4 | |a Turbulence | |
650 | 4 | |a Vortex | |
650 | 4 | |a Hybrid drag model | |
700 | 1 | |a Liao, Yixiang |e verfasserin |4 aut | |
700 | 1 | |a Hampel, Uwe |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemical engineering science |d Amsterdam [u.a.] : Elsevier Science, 1951 |g 246 |h Online-Ressource |w (DE-627)306717794 |w (DE-600)1501538-5 |w (DE-576)094503982 |7 nnns |
773 | 1 | 8 | |g volume:246 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.14 |j Chemische Reaktionstechnik |
951 | |a AR | ||
952 | |d 246 |
author_variant |
s t k stk y l yl u h uh |
---|---|
matchkey_str |
taskoehlersibelliaoyixianghampeluwe:2021----:ciiaaayiodafreoelnfriprealqifo |
hierarchy_sort_str |
2021 |
bklnumber |
58.14 |
publishDate |
2021 |
allfields |
10.1016/j.ces.2021.117007 doi (DE-627)ELV006666469 (ELSEVIER)S0009-2509(21)00572-8 DE-627 ger DE-627 rda eng 660 DE-600 58.14 bkl Tas-Koehler, Sibel verfasserin aut A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numerically evaluated several drag models from the literature for high-turbulent gas–liquid flow around an obstacle in a pipe that creates a distinct vortex region. We performed Computational Fluid Dynamics (CFD) simulations and compared the void fraction and gas velocity profiles with experimental data obtained by ultrafast X-ray computed tomography. We found that all models, except Schiller&Naumann and Feng, predicted the void fraction well compared to experimental data upstream of the obstacle, i.e., for a developed two-phase pipe flow with axial symmetry. However, the void fraction downstream is greatly overestimated by all models except those that appropriately consider the turbulence effects. Based on the results, a hybrid drag model is proposed that significantly improves the prediction of the void fraction. CFD Bubbly flow Drag force coefficient Turbulence Vortex Hybrid drag model Liao, Yixiang verfasserin aut Hampel, Uwe verfasserin aut Enthalten in Chemical engineering science Amsterdam [u.a.] : Elsevier Science, 1951 246 Online-Ressource (DE-627)306717794 (DE-600)1501538-5 (DE-576)094503982 nnns volume:246 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 58.14 Chemische Reaktionstechnik AR 246 |
spelling |
10.1016/j.ces.2021.117007 doi (DE-627)ELV006666469 (ELSEVIER)S0009-2509(21)00572-8 DE-627 ger DE-627 rda eng 660 DE-600 58.14 bkl Tas-Koehler, Sibel verfasserin aut A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numerically evaluated several drag models from the literature for high-turbulent gas–liquid flow around an obstacle in a pipe that creates a distinct vortex region. We performed Computational Fluid Dynamics (CFD) simulations and compared the void fraction and gas velocity profiles with experimental data obtained by ultrafast X-ray computed tomography. We found that all models, except Schiller&Naumann and Feng, predicted the void fraction well compared to experimental data upstream of the obstacle, i.e., for a developed two-phase pipe flow with axial symmetry. However, the void fraction downstream is greatly overestimated by all models except those that appropriately consider the turbulence effects. Based on the results, a hybrid drag model is proposed that significantly improves the prediction of the void fraction. CFD Bubbly flow Drag force coefficient Turbulence Vortex Hybrid drag model Liao, Yixiang verfasserin aut Hampel, Uwe verfasserin aut Enthalten in Chemical engineering science Amsterdam [u.a.] : Elsevier Science, 1951 246 Online-Ressource (DE-627)306717794 (DE-600)1501538-5 (DE-576)094503982 nnns volume:246 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 58.14 Chemische Reaktionstechnik AR 246 |
allfields_unstemmed |
10.1016/j.ces.2021.117007 doi (DE-627)ELV006666469 (ELSEVIER)S0009-2509(21)00572-8 DE-627 ger DE-627 rda eng 660 DE-600 58.14 bkl Tas-Koehler, Sibel verfasserin aut A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numerically evaluated several drag models from the literature for high-turbulent gas–liquid flow around an obstacle in a pipe that creates a distinct vortex region. We performed Computational Fluid Dynamics (CFD) simulations and compared the void fraction and gas velocity profiles with experimental data obtained by ultrafast X-ray computed tomography. We found that all models, except Schiller&Naumann and Feng, predicted the void fraction well compared to experimental data upstream of the obstacle, i.e., for a developed two-phase pipe flow with axial symmetry. However, the void fraction downstream is greatly overestimated by all models except those that appropriately consider the turbulence effects. Based on the results, a hybrid drag model is proposed that significantly improves the prediction of the void fraction. CFD Bubbly flow Drag force coefficient Turbulence Vortex Hybrid drag model Liao, Yixiang verfasserin aut Hampel, Uwe verfasserin aut Enthalten in Chemical engineering science Amsterdam [u.a.] : Elsevier Science, 1951 246 Online-Ressource (DE-627)306717794 (DE-600)1501538-5 (DE-576)094503982 nnns volume:246 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 58.14 Chemische Reaktionstechnik AR 246 |
allfieldsGer |
10.1016/j.ces.2021.117007 doi (DE-627)ELV006666469 (ELSEVIER)S0009-2509(21)00572-8 DE-627 ger DE-627 rda eng 660 DE-600 58.14 bkl Tas-Koehler, Sibel verfasserin aut A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numerically evaluated several drag models from the literature for high-turbulent gas–liquid flow around an obstacle in a pipe that creates a distinct vortex region. We performed Computational Fluid Dynamics (CFD) simulations and compared the void fraction and gas velocity profiles with experimental data obtained by ultrafast X-ray computed tomography. We found that all models, except Schiller&Naumann and Feng, predicted the void fraction well compared to experimental data upstream of the obstacle, i.e., for a developed two-phase pipe flow with axial symmetry. However, the void fraction downstream is greatly overestimated by all models except those that appropriately consider the turbulence effects. Based on the results, a hybrid drag model is proposed that significantly improves the prediction of the void fraction. CFD Bubbly flow Drag force coefficient Turbulence Vortex Hybrid drag model Liao, Yixiang verfasserin aut Hampel, Uwe verfasserin aut Enthalten in Chemical engineering science Amsterdam [u.a.] : Elsevier Science, 1951 246 Online-Ressource (DE-627)306717794 (DE-600)1501538-5 (DE-576)094503982 nnns volume:246 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 58.14 Chemische Reaktionstechnik AR 246 |
allfieldsSound |
10.1016/j.ces.2021.117007 doi (DE-627)ELV006666469 (ELSEVIER)S0009-2509(21)00572-8 DE-627 ger DE-627 rda eng 660 DE-600 58.14 bkl Tas-Koehler, Sibel verfasserin aut A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numerically evaluated several drag models from the literature for high-turbulent gas–liquid flow around an obstacle in a pipe that creates a distinct vortex region. We performed Computational Fluid Dynamics (CFD) simulations and compared the void fraction and gas velocity profiles with experimental data obtained by ultrafast X-ray computed tomography. We found that all models, except Schiller&Naumann and Feng, predicted the void fraction well compared to experimental data upstream of the obstacle, i.e., for a developed two-phase pipe flow with axial symmetry. However, the void fraction downstream is greatly overestimated by all models except those that appropriately consider the turbulence effects. Based on the results, a hybrid drag model is proposed that significantly improves the prediction of the void fraction. CFD Bubbly flow Drag force coefficient Turbulence Vortex Hybrid drag model Liao, Yixiang verfasserin aut Hampel, Uwe verfasserin aut Enthalten in Chemical engineering science Amsterdam [u.a.] : Elsevier Science, 1951 246 Online-Ressource (DE-627)306717794 (DE-600)1501538-5 (DE-576)094503982 nnns volume:246 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 58.14 Chemische Reaktionstechnik AR 246 |
language |
English |
source |
Enthalten in Chemical engineering science 246 volume:246 |
sourceStr |
Enthalten in Chemical engineering science 246 volume:246 |
format_phy_str_mv |
Article |
bklname |
Chemische Reaktionstechnik |
institution |
findex.gbv.de |
topic_facet |
CFD Bubbly flow Drag force coefficient Turbulence Vortex Hybrid drag model |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Chemical engineering science |
authorswithroles_txt_mv |
Tas-Koehler, Sibel @@aut@@ Liao, Yixiang @@aut@@ Hampel, Uwe @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
306717794 |
dewey-sort |
3660 |
id |
ELV006666469 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006666469</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524135905.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ces.2021.117007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006666469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0009-2509(21)00572-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.14</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tas-Koehler, Sibel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numerically evaluated several drag models from the literature for high-turbulent gas–liquid flow around an obstacle in a pipe that creates a distinct vortex region. We performed Computational Fluid Dynamics (CFD) simulations and compared the void fraction and gas velocity profiles with experimental data obtained by ultrafast X-ray computed tomography. We found that all models, except Schiller&Naumann and Feng, predicted the void fraction well compared to experimental data upstream of the obstacle, i.e., for a developed two-phase pipe flow with axial symmetry. However, the void fraction downstream is greatly overestimated by all models except those that appropriately consider the turbulence effects. Based on the results, a hybrid drag model is proposed that significantly improves the prediction of the void fraction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bubbly flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drag force coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid drag model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Yixiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hampel, Uwe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical engineering science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1951</subfield><subfield code="g">246</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306717794</subfield><subfield code="w">(DE-600)1501538-5</subfield><subfield code="w">(DE-576)094503982</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.14</subfield><subfield code="j">Chemische Reaktionstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">246</subfield></datafield></record></collection>
|
author |
Tas-Koehler, Sibel |
spellingShingle |
Tas-Koehler, Sibel ddc 660 bkl 58.14 misc CFD misc Bubbly flow misc Drag force coefficient misc Turbulence misc Vortex misc Hybrid drag model A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle |
authorStr |
Tas-Koehler, Sibel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306717794 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 DE-600 58.14 bkl A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle CFD Bubbly flow Drag force coefficient Turbulence Vortex Hybrid drag model |
topic |
ddc 660 bkl 58.14 misc CFD misc Bubbly flow misc Drag force coefficient misc Turbulence misc Vortex misc Hybrid drag model |
topic_unstemmed |
ddc 660 bkl 58.14 misc CFD misc Bubbly flow misc Drag force coefficient misc Turbulence misc Vortex misc Hybrid drag model |
topic_browse |
ddc 660 bkl 58.14 misc CFD misc Bubbly flow misc Drag force coefficient misc Turbulence misc Vortex misc Hybrid drag model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemical engineering science |
hierarchy_parent_id |
306717794 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Chemical engineering science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306717794 (DE-600)1501538-5 (DE-576)094503982 |
title |
A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle |
ctrlnum |
(DE-627)ELV006666469 (ELSEVIER)S0009-2509(21)00572-8 |
title_full |
A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle |
author_sort |
Tas-Koehler, Sibel |
journal |
Chemical engineering science |
journalStr |
Chemical engineering science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Tas-Koehler, Sibel Liao, Yixiang Hampel, Uwe |
container_volume |
246 |
class |
660 DE-600 58.14 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tas-Koehler, Sibel |
doi_str_mv |
10.1016/j.ces.2021.117007 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
a critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle |
title_auth |
A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle |
abstract |
The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numerically evaluated several drag models from the literature for high-turbulent gas–liquid flow around an obstacle in a pipe that creates a distinct vortex region. We performed Computational Fluid Dynamics (CFD) simulations and compared the void fraction and gas velocity profiles with experimental data obtained by ultrafast X-ray computed tomography. We found that all models, except Schiller&Naumann and Feng, predicted the void fraction well compared to experimental data upstream of the obstacle, i.e., for a developed two-phase pipe flow with axial symmetry. However, the void fraction downstream is greatly overestimated by all models except those that appropriately consider the turbulence effects. Based on the results, a hybrid drag model is proposed that significantly improves the prediction of the void fraction. |
abstractGer |
The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numerically evaluated several drag models from the literature for high-turbulent gas–liquid flow around an obstacle in a pipe that creates a distinct vortex region. We performed Computational Fluid Dynamics (CFD) simulations and compared the void fraction and gas velocity profiles with experimental data obtained by ultrafast X-ray computed tomography. We found that all models, except Schiller&Naumann and Feng, predicted the void fraction well compared to experimental data upstream of the obstacle, i.e., for a developed two-phase pipe flow with axial symmetry. However, the void fraction downstream is greatly overestimated by all models except those that appropriately consider the turbulence effects. Based on the results, a hybrid drag model is proposed that significantly improves the prediction of the void fraction. |
abstract_unstemmed |
The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numerically evaluated several drag models from the literature for high-turbulent gas–liquid flow around an obstacle in a pipe that creates a distinct vortex region. We performed Computational Fluid Dynamics (CFD) simulations and compared the void fraction and gas velocity profiles with experimental data obtained by ultrafast X-ray computed tomography. We found that all models, except Schiller&Naumann and Feng, predicted the void fraction well compared to experimental data upstream of the obstacle, i.e., for a developed two-phase pipe flow with axial symmetry. However, the void fraction downstream is greatly overestimated by all models except those that appropriately consider the turbulence effects. Based on the results, a hybrid drag model is proposed that significantly improves the prediction of the void fraction. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle |
remote_bool |
true |
author2 |
Liao, Yixiang Hampel, Uwe |
author2Str |
Liao, Yixiang Hampel, Uwe |
ppnlink |
306717794 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ces.2021.117007 |
up_date |
2024-07-06T22:09:17.040Z |
_version_ |
1803869232344072192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006666469</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524135905.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ces.2021.117007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006666469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0009-2509(21)00572-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.14</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tas-Koehler, Sibel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The accuracy of the modelling of gas–liquid flows depends strongly on a suitable modelling of the interfacial forces. Among these, drag is dominant. Most drag models reported in the literature have been derived and validated only for laminar or low-turbulent flow conditions. In this study, we numerically evaluated several drag models from the literature for high-turbulent gas–liquid flow around an obstacle in a pipe that creates a distinct vortex region. We performed Computational Fluid Dynamics (CFD) simulations and compared the void fraction and gas velocity profiles with experimental data obtained by ultrafast X-ray computed tomography. We found that all models, except Schiller&Naumann and Feng, predicted the void fraction well compared to experimental data upstream of the obstacle, i.e., for a developed two-phase pipe flow with axial symmetry. However, the void fraction downstream is greatly overestimated by all models except those that appropriately consider the turbulence effects. Based on the results, a hybrid drag model is proposed that significantly improves the prediction of the void fraction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bubbly flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drag force coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid drag model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Yixiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hampel, Uwe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical engineering science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1951</subfield><subfield code="g">246</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306717794</subfield><subfield code="w">(DE-600)1501538-5</subfield><subfield code="w">(DE-576)094503982</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.14</subfield><subfield code="j">Chemische Reaktionstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">246</subfield></datafield></record></collection>
|
score |
7.401705 |