The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview
Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectang...
Ausführliche Beschreibung
Autor*in: |
Neuenfeldt Júnior, Alvaro [verfasserIn] Silva, Elsa [verfasserIn] Francescatto, Matheus [verfasserIn] Rosa, Carmen Brum [verfasserIn] Siluk, Julio [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Operations Research / Mathematische Optimierung / Wirtschaftsinformatik |
---|---|
Schlagwörter: |
Übergeordnetes Werk: |
Enthalten in: Computers & operations research - Amsterdam [u.a.] : Elsevier, 1974, 137 |
---|---|
Übergeordnetes Werk: |
volume:137 |
DOI / URN: |
10.1016/j.cor.2021.105521 |
---|
Katalog-ID: |
ELV006676723 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006676723 | ||
003 | DE-627 | ||
005 | 20230524154641.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cor.2021.105521 |2 doi | |
035 | |a (DE-627)ELV006676723 | ||
035 | |a (ELSEVIER)S0305-0548(21)00261-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 85.03 |2 bkl | ||
084 | |a 31.80 |2 bkl | ||
084 | |a 54.80 |2 bkl | ||
084 | |a 50.03 |2 bkl | ||
100 | 1 | |a Neuenfeldt Júnior, Alvaro |e verfasserin |4 aut | |
245 | 1 | 0 | |a The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints. | ||
650 | 7 | |8 1.1\x |a Operations Research |0 (DE-2867)15483-0 |2 stw | |
650 | 7 | |8 1.2\x |a Mathematische Optimierung |0 (DE-2867)15055-0 |2 stw | |
650 | 7 | |8 1.3\x |a Wirtschaftsinformatik |0 (DE-2867)12172-4 |2 stw | |
650 | 4 | |a Strip packing problem | |
650 | 4 | |a Cutting and packing problems | |
650 | 4 | |a Constraints | |
650 | 4 | |a Systematic literature review | |
700 | 1 | |a Silva, Elsa |e verfasserin |4 aut | |
700 | 1 | |a Francescatto, Matheus |e verfasserin |4 aut | |
700 | 1 | |a Rosa, Carmen Brum |e verfasserin |4 aut | |
700 | 1 | |a Siluk, Julio |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers & operations research |d Amsterdam [u.a.] : Elsevier, 1974 |g 137 |h Online-Ressource |w (DE-627)306652668 |w (DE-600)1499736-8 |w (DE-576)081954336 |x 0305-0548 |7 nnns |
773 | 1 | 8 | |g volume:137 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 85.03 |j Methoden und Techniken der Betriebswirtschaft |
936 | b | k | |a 31.80 |j Angewandte Mathematik |
936 | b | k | |a 54.80 |j Angewandte Informatik |
936 | b | k | |a 50.03 |j Methoden und Techniken der Ingenieurwissenschaften |
936 | s | n | |a BIZ-10001 |2 SKW |
951 | |a AR | ||
952 | |d 137 |
author_variant |
j a n ja jan e s es m f mf c b r cb cbr j s js |
---|---|
matchkey_str |
article:03050548:2021----::hrcaglrwdmninltipcigrberalfpatclosri |
hierarchy_sort_str |
2021 |
bklnumber |
85.03 31.80 54.80 50.03 |
publishDate |
2021 |
allfields |
10.1016/j.cor.2021.105521 doi (DE-627)ELV006676723 (ELSEVIER)S0305-0548(21)00261-6 DE-627 ger DE-627 rda eng 85.03 bkl 31.80 bkl 54.80 bkl 50.03 bkl Neuenfeldt Júnior, Alvaro verfasserin aut The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints. 1.1\x Operations Research (DE-2867)15483-0 stw 1.2\x Mathematische Optimierung (DE-2867)15055-0 stw 1.3\x Wirtschaftsinformatik (DE-2867)12172-4 stw Strip packing problem Cutting and packing problems Constraints Systematic literature review Silva, Elsa verfasserin aut Francescatto, Matheus verfasserin aut Rosa, Carmen Brum verfasserin aut Siluk, Julio verfasserin aut Enthalten in Computers & operations research Amsterdam [u.a.] : Elsevier, 1974 137 Online-Ressource (DE-627)306652668 (DE-600)1499736-8 (DE-576)081954336 0305-0548 nnns volume:137 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.03 Methoden und Techniken der Betriebswirtschaft 31.80 Angewandte Mathematik 54.80 Angewandte Informatik 50.03 Methoden und Techniken der Ingenieurwissenschaften BIZ-10001 SKW AR 137 |
spelling |
10.1016/j.cor.2021.105521 doi (DE-627)ELV006676723 (ELSEVIER)S0305-0548(21)00261-6 DE-627 ger DE-627 rda eng 85.03 bkl 31.80 bkl 54.80 bkl 50.03 bkl Neuenfeldt Júnior, Alvaro verfasserin aut The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints. 1.1\x Operations Research (DE-2867)15483-0 stw 1.2\x Mathematische Optimierung (DE-2867)15055-0 stw 1.3\x Wirtschaftsinformatik (DE-2867)12172-4 stw Strip packing problem Cutting and packing problems Constraints Systematic literature review Silva, Elsa verfasserin aut Francescatto, Matheus verfasserin aut Rosa, Carmen Brum verfasserin aut Siluk, Julio verfasserin aut Enthalten in Computers & operations research Amsterdam [u.a.] : Elsevier, 1974 137 Online-Ressource (DE-627)306652668 (DE-600)1499736-8 (DE-576)081954336 0305-0548 nnns volume:137 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.03 Methoden und Techniken der Betriebswirtschaft 31.80 Angewandte Mathematik 54.80 Angewandte Informatik 50.03 Methoden und Techniken der Ingenieurwissenschaften BIZ-10001 SKW AR 137 |
allfields_unstemmed |
10.1016/j.cor.2021.105521 doi (DE-627)ELV006676723 (ELSEVIER)S0305-0548(21)00261-6 DE-627 ger DE-627 rda eng 85.03 bkl 31.80 bkl 54.80 bkl 50.03 bkl Neuenfeldt Júnior, Alvaro verfasserin aut The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints. 1.1\x Operations Research (DE-2867)15483-0 stw 1.2\x Mathematische Optimierung (DE-2867)15055-0 stw 1.3\x Wirtschaftsinformatik (DE-2867)12172-4 stw Strip packing problem Cutting and packing problems Constraints Systematic literature review Silva, Elsa verfasserin aut Francescatto, Matheus verfasserin aut Rosa, Carmen Brum verfasserin aut Siluk, Julio verfasserin aut Enthalten in Computers & operations research Amsterdam [u.a.] : Elsevier, 1974 137 Online-Ressource (DE-627)306652668 (DE-600)1499736-8 (DE-576)081954336 0305-0548 nnns volume:137 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.03 Methoden und Techniken der Betriebswirtschaft 31.80 Angewandte Mathematik 54.80 Angewandte Informatik 50.03 Methoden und Techniken der Ingenieurwissenschaften BIZ-10001 SKW AR 137 |
allfieldsGer |
10.1016/j.cor.2021.105521 doi (DE-627)ELV006676723 (ELSEVIER)S0305-0548(21)00261-6 DE-627 ger DE-627 rda eng 85.03 bkl 31.80 bkl 54.80 bkl 50.03 bkl Neuenfeldt Júnior, Alvaro verfasserin aut The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints. 1.1\x Operations Research (DE-2867)15483-0 stw 1.2\x Mathematische Optimierung (DE-2867)15055-0 stw 1.3\x Wirtschaftsinformatik (DE-2867)12172-4 stw Strip packing problem Cutting and packing problems Constraints Systematic literature review Silva, Elsa verfasserin aut Francescatto, Matheus verfasserin aut Rosa, Carmen Brum verfasserin aut Siluk, Julio verfasserin aut Enthalten in Computers & operations research Amsterdam [u.a.] : Elsevier, 1974 137 Online-Ressource (DE-627)306652668 (DE-600)1499736-8 (DE-576)081954336 0305-0548 nnns volume:137 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.03 Methoden und Techniken der Betriebswirtschaft 31.80 Angewandte Mathematik 54.80 Angewandte Informatik 50.03 Methoden und Techniken der Ingenieurwissenschaften BIZ-10001 SKW AR 137 |
allfieldsSound |
10.1016/j.cor.2021.105521 doi (DE-627)ELV006676723 (ELSEVIER)S0305-0548(21)00261-6 DE-627 ger DE-627 rda eng 85.03 bkl 31.80 bkl 54.80 bkl 50.03 bkl Neuenfeldt Júnior, Alvaro verfasserin aut The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints. 1.1\x Operations Research (DE-2867)15483-0 stw 1.2\x Mathematische Optimierung (DE-2867)15055-0 stw 1.3\x Wirtschaftsinformatik (DE-2867)12172-4 stw Strip packing problem Cutting and packing problems Constraints Systematic literature review Silva, Elsa verfasserin aut Francescatto, Matheus verfasserin aut Rosa, Carmen Brum verfasserin aut Siluk, Julio verfasserin aut Enthalten in Computers & operations research Amsterdam [u.a.] : Elsevier, 1974 137 Online-Ressource (DE-627)306652668 (DE-600)1499736-8 (DE-576)081954336 0305-0548 nnns volume:137 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.03 Methoden und Techniken der Betriebswirtschaft 31.80 Angewandte Mathematik 54.80 Angewandte Informatik 50.03 Methoden und Techniken der Ingenieurwissenschaften BIZ-10001 SKW AR 137 |
language |
English |
source |
Enthalten in Computers & operations research 137 volume:137 |
sourceStr |
Enthalten in Computers & operations research 137 volume:137 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Betriebswirtschaft Angewandte Mathematik Angewandte Informatik Methoden und Techniken der Ingenieurwissenschaften |
institution |
findex.gbv.de |
topic_facet |
Operations Research Mathematische Optimierung Wirtschaftsinformatik Strip packing problem Cutting and packing problems Constraints Systematic literature review |
isfreeaccess_bool |
false |
container_title |
Computers & operations research |
authorswithroles_txt_mv |
Neuenfeldt Júnior, Alvaro @@aut@@ Silva, Elsa @@aut@@ Francescatto, Matheus @@aut@@ Rosa, Carmen Brum @@aut@@ Siluk, Julio @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
306652668 |
id |
ELV006676723 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006676723</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154641.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cor.2021.105521</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006676723</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0305-0548(21)00261-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neuenfeldt Júnior, Alvaro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.1\x</subfield><subfield code="a">Operations Research</subfield><subfield code="0">(DE-2867)15483-0</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.2\x</subfield><subfield code="a">Mathematische Optimierung</subfield><subfield code="0">(DE-2867)15055-0</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.3\x</subfield><subfield code="a">Wirtschaftsinformatik</subfield><subfield code="0">(DE-2867)12172-4</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strip packing problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cutting and packing problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systematic literature review</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Elsa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Francescatto, Matheus</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosa, Carmen Brum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siluk, Julio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & operations research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1974</subfield><subfield code="g">137</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306652668</subfield><subfield code="w">(DE-600)1499736-8</subfield><subfield code="w">(DE-576)081954336</subfield><subfield code="x">0305-0548</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:137</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.03</subfield><subfield code="j">Methoden und Techniken der Betriebswirtschaft</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="j">Angewandte Informatik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="j">Methoden und Techniken der Ingenieurwissenschaften</subfield></datafield><datafield tag="936" ind1="s" ind2="n"><subfield code="a">BIZ-10001</subfield><subfield code="2">SKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">137</subfield></datafield></record></collection>
|
author |
Neuenfeldt Júnior, Alvaro |
spellingShingle |
Neuenfeldt Júnior, Alvaro bkl 85.03 bkl 31.80 bkl 54.80 bkl 50.03 stw Operations Research stw Mathematische Optimierung stw Wirtschaftsinformatik misc Strip packing problem misc Cutting and packing problems misc Constraints misc Systematic literature review The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview |
authorStr |
Neuenfeldt Júnior, Alvaro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306652668 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0305-0548 |
topic_title |
85.03 bkl 31.80 bkl 54.80 bkl 50.03 bkl The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview 1.1\x Operations Research (DE-2867)15483-0 stw 1.2\x Mathematische Optimierung (DE-2867)15055-0 stw 1.3\x Wirtschaftsinformatik (DE-2867)12172-4 stw Strip packing problem Cutting and packing problems Constraints Systematic literature review |
topic |
bkl 85.03 bkl 31.80 bkl 54.80 bkl 50.03 stw Operations Research stw Mathematische Optimierung stw Wirtschaftsinformatik misc Strip packing problem misc Cutting and packing problems misc Constraints misc Systematic literature review |
topic_unstemmed |
bkl 85.03 bkl 31.80 bkl 54.80 bkl 50.03 stw Operations Research stw Mathematische Optimierung stw Wirtschaftsinformatik misc Strip packing problem misc Cutting and packing problems misc Constraints misc Systematic literature review |
topic_browse |
bkl 85.03 bkl 31.80 bkl 54.80 bkl 50.03 stw Operations Research stw Mathematische Optimierung stw Wirtschaftsinformatik misc Strip packing problem misc Cutting and packing problems misc Constraints misc Systematic literature review |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers & operations research |
hierarchy_parent_id |
306652668 |
hierarchy_top_title |
Computers & operations research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306652668 (DE-600)1499736-8 (DE-576)081954336 |
title |
The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview |
ctrlnum |
(DE-627)ELV006676723 (ELSEVIER)S0305-0548(21)00261-6 |
title_full |
The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview |
author_sort |
Neuenfeldt Júnior, Alvaro |
journal |
Computers & operations research |
journalStr |
Computers & operations research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
class_local_iln |
SKW:BIZ-10001 |
author_browse |
Neuenfeldt Júnior, Alvaro Silva, Elsa Francescatto, Matheus Rosa, Carmen Brum Siluk, Julio |
container_volume |
137 |
class |
85.03 bkl 31.80 bkl 54.80 bkl 50.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Neuenfeldt Júnior, Alvaro |
doi_str_mv |
10.1016/j.cor.2021.105521 |
normlink |
(DE-2867)15483-0 (DE-2867)15055-0 (DE-2867)12172-4 |
normlink_prefix_str_mv |
(DE-2867)15483-0 (DE-2867)15055-0 (DE-2867)12172-4 |
author2-role |
verfasserin |
title_sort |
the rectangular two-dimensional strip packing problem real-life practical constraints: a bibliometric overview |
title_auth |
The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview |
abstract |
Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints. |
abstractGer |
Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints. |
abstract_unstemmed |
Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview |
remote_bool |
true |
author2 |
Silva, Elsa Francescatto, Matheus Rosa, Carmen Brum Siluk, Julio |
author2Str |
Silva, Elsa Francescatto, Matheus Rosa, Carmen Brum Siluk, Julio |
ppnlink |
306652668 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cor.2021.105521 |
up_date |
2024-07-06T22:11:19.829Z |
_version_ |
1803869361097670656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006676723</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154641.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cor.2021.105521</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006676723</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0305-0548(21)00261-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neuenfeldt Júnior, Alvaro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular two-dimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.1\x</subfield><subfield code="a">Operations Research</subfield><subfield code="0">(DE-2867)15483-0</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.2\x</subfield><subfield code="a">Mathematische Optimierung</subfield><subfield code="0">(DE-2867)15055-0</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.3\x</subfield><subfield code="a">Wirtschaftsinformatik</subfield><subfield code="0">(DE-2867)12172-4</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strip packing problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cutting and packing problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systematic literature review</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Elsa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Francescatto, Matheus</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosa, Carmen Brum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siluk, Julio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & operations research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1974</subfield><subfield code="g">137</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306652668</subfield><subfield code="w">(DE-600)1499736-8</subfield><subfield code="w">(DE-576)081954336</subfield><subfield code="x">0305-0548</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:137</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.03</subfield><subfield code="j">Methoden und Techniken der Betriebswirtschaft</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="j">Angewandte Informatik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="j">Methoden und Techniken der Ingenieurwissenschaften</subfield></datafield><datafield tag="936" ind1="s" ind2="n"><subfield code="a">BIZ-10001</subfield><subfield code="2">SKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">137</subfield></datafield></record></collection>
|
score |
7.401311 |