Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy
Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS...
Ausführliche Beschreibung
Autor*in: |
Wei, Dongsong [verfasserIn] Wang, Jinguo [verfasserIn] Li, Shuyi [verfasserIn] Liu, Yan [verfasserIn] Wang, Dawei [verfasserIn] Wang, Huiyuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 425 |
---|---|
Übergeordnetes Werk: |
volume:425 |
DOI / URN: |
10.1016/j.cej.2021.130450 |
---|
Katalog-ID: |
ELV006692796 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006692796 | ||
003 | DE-627 | ||
005 | 20230524131735.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2021.130450 |2 doi | |
035 | |a (DE-627)ELV006692796 | ||
035 | |a (ELSEVIER)S1385-8947(21)02036-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 660.05 |q DE-101 | |
082 | 0 | 4 | |a 660 |q DE-101 |
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Wei, Dongsong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS on Mg alloy to improve corrosion resistance and provide different water-repellent properties. The SHS and SLIPS are fabricated based on a laser-ablated polydimethylsiloxaneAl2O3@Fe2O3 coating (PAFC). After laser processing, the irradiated PAFC consists of micro/nanostructured texture resulting in excellent superhydrophobicity. The SLIPS is fabricated by filling the lubricant into the laser-structured texture of the SHS. Then, the surface can be easily switched between the SHS and SLIPS by alcohol washing and lubricant-infusion. The non-irradiated PAFC acts as a superior and durable corrosion barrier. Notably, the switchable surface exhibits an excellent anti-corrosion ability (with large impedance modulus at 10−2 Hz about 1011 Ω cm2) in both surface states, which does not have any degradation after being immersed in 3.5 wt% NaCl aqueous solution for 60 days. The SHS and SLIPS have durable air and lubricant layers, respectively, repelling the corrosive species during the immersion test. Simultaneously, the SHS and SLIPS can delay corrosion at an artificial defect area. The SLIPS performs better in the above abilities than the SHS owing to the lubricant layer's stability and self-healing property. The SHS with droplet rolling mode has better droplet transportability, water shielding ability, and self-cleaning ability than those of the SLIPS with droplet sliding mode in dealing with dynamic droplets. Meaningfully, the surface with switchable wettability exhibits long-term corrosion protection and promises a wide range of application prospects of metals such as anti-icing, drag reduction, anti-fouling, etc. | ||
650 | 4 | |a Magnesium alloy | |
650 | 4 | |a Superhydrophobic surface | |
650 | 4 | |a Slippery liquid-infused porous surface | |
650 | 4 | |a Switchable | |
650 | 4 | |a Anti-corrosion | |
700 | 1 | |a Wang, Jinguo |e verfasserin |4 aut | |
700 | 1 | |a Li, Shuyi |e verfasserin |4 aut | |
700 | 1 | |a Liu, Yan |e verfasserin |4 aut | |
700 | 1 | |a Wang, Dawei |e verfasserin |4 aut | |
700 | 1 | |a Wang, Huiyuan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 425 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:425 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |
951 | |a AR | ||
952 | |d 425 | ||
953 | |2 045F |a 660.05 |
author_variant |
d w dw j w jw s l sl y l yl d w dw h w hw |
---|---|
matchkey_str |
article:18733212:2021----::oecroineitnbhvoadehnsoaimmtcufcwtsic |
hierarchy_sort_str |
2021 |
bklnumber |
58.10 |
publishDate |
2021 |
allfields |
10.1016/j.cej.2021.130450 doi (DE-627)ELV006692796 (ELSEVIER)S1385-8947(21)02036-2 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Wei, Dongsong verfasserin aut Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS on Mg alloy to improve corrosion resistance and provide different water-repellent properties. The SHS and SLIPS are fabricated based on a laser-ablated polydimethylsiloxaneAl2O3@Fe2O3 coating (PAFC). After laser processing, the irradiated PAFC consists of micro/nanostructured texture resulting in excellent superhydrophobicity. The SLIPS is fabricated by filling the lubricant into the laser-structured texture of the SHS. Then, the surface can be easily switched between the SHS and SLIPS by alcohol washing and lubricant-infusion. The non-irradiated PAFC acts as a superior and durable corrosion barrier. Notably, the switchable surface exhibits an excellent anti-corrosion ability (with large impedance modulus at 10−2 Hz about 1011 Ω cm2) in both surface states, which does not have any degradation after being immersed in 3.5 wt% NaCl aqueous solution for 60 days. The SHS and SLIPS have durable air and lubricant layers, respectively, repelling the corrosive species during the immersion test. Simultaneously, the SHS and SLIPS can delay corrosion at an artificial defect area. The SLIPS performs better in the above abilities than the SHS owing to the lubricant layer's stability and self-healing property. The SHS with droplet rolling mode has better droplet transportability, water shielding ability, and self-cleaning ability than those of the SLIPS with droplet sliding mode in dealing with dynamic droplets. Meaningfully, the surface with switchable wettability exhibits long-term corrosion protection and promises a wide range of application prospects of metals such as anti-icing, drag reduction, anti-fouling, etc. Magnesium alloy Superhydrophobic surface Slippery liquid-infused porous surface Switchable Anti-corrosion Wang, Jinguo verfasserin aut Li, Shuyi verfasserin aut Liu, Yan verfasserin aut Wang, Dawei verfasserin aut Wang, Huiyuan verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 425 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:425 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 425 045F 660.05 |
spelling |
10.1016/j.cej.2021.130450 doi (DE-627)ELV006692796 (ELSEVIER)S1385-8947(21)02036-2 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Wei, Dongsong verfasserin aut Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS on Mg alloy to improve corrosion resistance and provide different water-repellent properties. The SHS and SLIPS are fabricated based on a laser-ablated polydimethylsiloxaneAl2O3@Fe2O3 coating (PAFC). After laser processing, the irradiated PAFC consists of micro/nanostructured texture resulting in excellent superhydrophobicity. The SLIPS is fabricated by filling the lubricant into the laser-structured texture of the SHS. Then, the surface can be easily switched between the SHS and SLIPS by alcohol washing and lubricant-infusion. The non-irradiated PAFC acts as a superior and durable corrosion barrier. Notably, the switchable surface exhibits an excellent anti-corrosion ability (with large impedance modulus at 10−2 Hz about 1011 Ω cm2) in both surface states, which does not have any degradation after being immersed in 3.5 wt% NaCl aqueous solution for 60 days. The SHS and SLIPS have durable air and lubricant layers, respectively, repelling the corrosive species during the immersion test. Simultaneously, the SHS and SLIPS can delay corrosion at an artificial defect area. The SLIPS performs better in the above abilities than the SHS owing to the lubricant layer's stability and self-healing property. The SHS with droplet rolling mode has better droplet transportability, water shielding ability, and self-cleaning ability than those of the SLIPS with droplet sliding mode in dealing with dynamic droplets. Meaningfully, the surface with switchable wettability exhibits long-term corrosion protection and promises a wide range of application prospects of metals such as anti-icing, drag reduction, anti-fouling, etc. Magnesium alloy Superhydrophobic surface Slippery liquid-infused porous surface Switchable Anti-corrosion Wang, Jinguo verfasserin aut Li, Shuyi verfasserin aut Liu, Yan verfasserin aut Wang, Dawei verfasserin aut Wang, Huiyuan verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 425 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:425 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 425 045F 660.05 |
allfields_unstemmed |
10.1016/j.cej.2021.130450 doi (DE-627)ELV006692796 (ELSEVIER)S1385-8947(21)02036-2 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Wei, Dongsong verfasserin aut Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS on Mg alloy to improve corrosion resistance and provide different water-repellent properties. The SHS and SLIPS are fabricated based on a laser-ablated polydimethylsiloxaneAl2O3@Fe2O3 coating (PAFC). After laser processing, the irradiated PAFC consists of micro/nanostructured texture resulting in excellent superhydrophobicity. The SLIPS is fabricated by filling the lubricant into the laser-structured texture of the SHS. Then, the surface can be easily switched between the SHS and SLIPS by alcohol washing and lubricant-infusion. The non-irradiated PAFC acts as a superior and durable corrosion barrier. Notably, the switchable surface exhibits an excellent anti-corrosion ability (with large impedance modulus at 10−2 Hz about 1011 Ω cm2) in both surface states, which does not have any degradation after being immersed in 3.5 wt% NaCl aqueous solution for 60 days. The SHS and SLIPS have durable air and lubricant layers, respectively, repelling the corrosive species during the immersion test. Simultaneously, the SHS and SLIPS can delay corrosion at an artificial defect area. The SLIPS performs better in the above abilities than the SHS owing to the lubricant layer's stability and self-healing property. The SHS with droplet rolling mode has better droplet transportability, water shielding ability, and self-cleaning ability than those of the SLIPS with droplet sliding mode in dealing with dynamic droplets. Meaningfully, the surface with switchable wettability exhibits long-term corrosion protection and promises a wide range of application prospects of metals such as anti-icing, drag reduction, anti-fouling, etc. Magnesium alloy Superhydrophobic surface Slippery liquid-infused porous surface Switchable Anti-corrosion Wang, Jinguo verfasserin aut Li, Shuyi verfasserin aut Liu, Yan verfasserin aut Wang, Dawei verfasserin aut Wang, Huiyuan verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 425 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:425 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 425 045F 660.05 |
allfieldsGer |
10.1016/j.cej.2021.130450 doi (DE-627)ELV006692796 (ELSEVIER)S1385-8947(21)02036-2 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Wei, Dongsong verfasserin aut Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS on Mg alloy to improve corrosion resistance and provide different water-repellent properties. The SHS and SLIPS are fabricated based on a laser-ablated polydimethylsiloxaneAl2O3@Fe2O3 coating (PAFC). After laser processing, the irradiated PAFC consists of micro/nanostructured texture resulting in excellent superhydrophobicity. The SLIPS is fabricated by filling the lubricant into the laser-structured texture of the SHS. Then, the surface can be easily switched between the SHS and SLIPS by alcohol washing and lubricant-infusion. The non-irradiated PAFC acts as a superior and durable corrosion barrier. Notably, the switchable surface exhibits an excellent anti-corrosion ability (with large impedance modulus at 10−2 Hz about 1011 Ω cm2) in both surface states, which does not have any degradation after being immersed in 3.5 wt% NaCl aqueous solution for 60 days. The SHS and SLIPS have durable air and lubricant layers, respectively, repelling the corrosive species during the immersion test. Simultaneously, the SHS and SLIPS can delay corrosion at an artificial defect area. The SLIPS performs better in the above abilities than the SHS owing to the lubricant layer's stability and self-healing property. The SHS with droplet rolling mode has better droplet transportability, water shielding ability, and self-cleaning ability than those of the SLIPS with droplet sliding mode in dealing with dynamic droplets. Meaningfully, the surface with switchable wettability exhibits long-term corrosion protection and promises a wide range of application prospects of metals such as anti-icing, drag reduction, anti-fouling, etc. Magnesium alloy Superhydrophobic surface Slippery liquid-infused porous surface Switchable Anti-corrosion Wang, Jinguo verfasserin aut Li, Shuyi verfasserin aut Liu, Yan verfasserin aut Wang, Dawei verfasserin aut Wang, Huiyuan verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 425 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:425 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 425 045F 660.05 |
allfieldsSound |
10.1016/j.cej.2021.130450 doi (DE-627)ELV006692796 (ELSEVIER)S1385-8947(21)02036-2 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Wei, Dongsong verfasserin aut Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS on Mg alloy to improve corrosion resistance and provide different water-repellent properties. The SHS and SLIPS are fabricated based on a laser-ablated polydimethylsiloxaneAl2O3@Fe2O3 coating (PAFC). After laser processing, the irradiated PAFC consists of micro/nanostructured texture resulting in excellent superhydrophobicity. The SLIPS is fabricated by filling the lubricant into the laser-structured texture of the SHS. Then, the surface can be easily switched between the SHS and SLIPS by alcohol washing and lubricant-infusion. The non-irradiated PAFC acts as a superior and durable corrosion barrier. Notably, the switchable surface exhibits an excellent anti-corrosion ability (with large impedance modulus at 10−2 Hz about 1011 Ω cm2) in both surface states, which does not have any degradation after being immersed in 3.5 wt% NaCl aqueous solution for 60 days. The SHS and SLIPS have durable air and lubricant layers, respectively, repelling the corrosive species during the immersion test. Simultaneously, the SHS and SLIPS can delay corrosion at an artificial defect area. The SLIPS performs better in the above abilities than the SHS owing to the lubricant layer's stability and self-healing property. The SHS with droplet rolling mode has better droplet transportability, water shielding ability, and self-cleaning ability than those of the SLIPS with droplet sliding mode in dealing with dynamic droplets. Meaningfully, the surface with switchable wettability exhibits long-term corrosion protection and promises a wide range of application prospects of metals such as anti-icing, drag reduction, anti-fouling, etc. Magnesium alloy Superhydrophobic surface Slippery liquid-infused porous surface Switchable Anti-corrosion Wang, Jinguo verfasserin aut Li, Shuyi verfasserin aut Liu, Yan verfasserin aut Wang, Dawei verfasserin aut Wang, Huiyuan verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 425 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:425 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 425 045F 660.05 |
language |
English |
source |
Enthalten in The chemical engineering journal 425 volume:425 |
sourceStr |
Enthalten in The chemical engineering journal 425 volume:425 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Magnesium alloy Superhydrophobic surface Slippery liquid-infused porous surface Switchable Anti-corrosion |
dewey-raw |
660.05 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Wei, Dongsong @@aut@@ Wang, Jinguo @@aut@@ Li, Shuyi @@aut@@ Liu, Yan @@aut@@ Wang, Dawei @@aut@@ Wang, Huiyuan @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660.05 |
id |
ELV006692796 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006692796</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131735.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2021.130450</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006692796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(21)02036-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Dongsong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS on Mg alloy to improve corrosion resistance and provide different water-repellent properties. The SHS and SLIPS are fabricated based on a laser-ablated polydimethylsiloxaneAl2O3@Fe2O3 coating (PAFC). After laser processing, the irradiated PAFC consists of micro/nanostructured texture resulting in excellent superhydrophobicity. The SLIPS is fabricated by filling the lubricant into the laser-structured texture of the SHS. Then, the surface can be easily switched between the SHS and SLIPS by alcohol washing and lubricant-infusion. The non-irradiated PAFC acts as a superior and durable corrosion barrier. Notably, the switchable surface exhibits an excellent anti-corrosion ability (with large impedance modulus at 10−2 Hz about 1011 Ω cm2) in both surface states, which does not have any degradation after being immersed in 3.5 wt% NaCl aqueous solution for 60 days. The SHS and SLIPS have durable air and lubricant layers, respectively, repelling the corrosive species during the immersion test. Simultaneously, the SHS and SLIPS can delay corrosion at an artificial defect area. The SLIPS performs better in the above abilities than the SHS owing to the lubricant layer's stability and self-healing property. The SHS with droplet rolling mode has better droplet transportability, water shielding ability, and self-cleaning ability than those of the SLIPS with droplet sliding mode in dealing with dynamic droplets. Meaningfully, the surface with switchable wettability exhibits long-term corrosion protection and promises a wide range of application prospects of metals such as anti-icing, drag reduction, anti-fouling, etc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesium alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superhydrophobic surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slippery liquid-infused porous surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switchable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-corrosion</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jinguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shuyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dawei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Huiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">425</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:425</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">425</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
author |
Wei, Dongsong |
spellingShingle |
Wei, Dongsong ddc 660.05 ddc 660 bkl 58.10 misc Magnesium alloy misc Superhydrophobic surface misc Slippery liquid-infused porous surface misc Switchable misc Anti-corrosion Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy |
authorStr |
Wei, Dongsong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy Magnesium alloy Superhydrophobic surface Slippery liquid-infused porous surface Switchable Anti-corrosion |
topic |
ddc 660.05 ddc 660 bkl 58.10 misc Magnesium alloy misc Superhydrophobic surface misc Slippery liquid-infused porous surface misc Switchable misc Anti-corrosion |
topic_unstemmed |
ddc 660.05 ddc 660 bkl 58.10 misc Magnesium alloy misc Superhydrophobic surface misc Slippery liquid-infused porous surface misc Switchable misc Anti-corrosion |
topic_browse |
ddc 660.05 ddc 660 bkl 58.10 misc Magnesium alloy misc Superhydrophobic surface misc Slippery liquid-infused porous surface misc Switchable misc Anti-corrosion |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy |
ctrlnum |
(DE-627)ELV006692796 (ELSEVIER)S1385-8947(21)02036-2 |
title_full |
Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy |
author_sort |
Wei, Dongsong |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Wei, Dongsong Wang, Jinguo Li, Shuyi Liu, Yan Wang, Dawei Wang, Huiyuan |
container_volume |
425 |
class |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wei, Dongsong |
doi_str_mv |
10.1016/j.cej.2021.130450 |
dewey-full |
660.05 660 |
author2-role |
verfasserin |
title_sort |
novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on mg alloy |
title_auth |
Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy |
abstract |
Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS on Mg alloy to improve corrosion resistance and provide different water-repellent properties. The SHS and SLIPS are fabricated based on a laser-ablated polydimethylsiloxaneAl2O3@Fe2O3 coating (PAFC). After laser processing, the irradiated PAFC consists of micro/nanostructured texture resulting in excellent superhydrophobicity. The SLIPS is fabricated by filling the lubricant into the laser-structured texture of the SHS. Then, the surface can be easily switched between the SHS and SLIPS by alcohol washing and lubricant-infusion. The non-irradiated PAFC acts as a superior and durable corrosion barrier. Notably, the switchable surface exhibits an excellent anti-corrosion ability (with large impedance modulus at 10−2 Hz about 1011 Ω cm2) in both surface states, which does not have any degradation after being immersed in 3.5 wt% NaCl aqueous solution for 60 days. The SHS and SLIPS have durable air and lubricant layers, respectively, repelling the corrosive species during the immersion test. Simultaneously, the SHS and SLIPS can delay corrosion at an artificial defect area. The SLIPS performs better in the above abilities than the SHS owing to the lubricant layer's stability and self-healing property. The SHS with droplet rolling mode has better droplet transportability, water shielding ability, and self-cleaning ability than those of the SLIPS with droplet sliding mode in dealing with dynamic droplets. Meaningfully, the surface with switchable wettability exhibits long-term corrosion protection and promises a wide range of application prospects of metals such as anti-icing, drag reduction, anti-fouling, etc. |
abstractGer |
Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS on Mg alloy to improve corrosion resistance and provide different water-repellent properties. The SHS and SLIPS are fabricated based on a laser-ablated polydimethylsiloxaneAl2O3@Fe2O3 coating (PAFC). After laser processing, the irradiated PAFC consists of micro/nanostructured texture resulting in excellent superhydrophobicity. The SLIPS is fabricated by filling the lubricant into the laser-structured texture of the SHS. Then, the surface can be easily switched between the SHS and SLIPS by alcohol washing and lubricant-infusion. The non-irradiated PAFC acts as a superior and durable corrosion barrier. Notably, the switchable surface exhibits an excellent anti-corrosion ability (with large impedance modulus at 10−2 Hz about 1011 Ω cm2) in both surface states, which does not have any degradation after being immersed in 3.5 wt% NaCl aqueous solution for 60 days. The SHS and SLIPS have durable air and lubricant layers, respectively, repelling the corrosive species during the immersion test. Simultaneously, the SHS and SLIPS can delay corrosion at an artificial defect area. The SLIPS performs better in the above abilities than the SHS owing to the lubricant layer's stability and self-healing property. The SHS with droplet rolling mode has better droplet transportability, water shielding ability, and self-cleaning ability than those of the SLIPS with droplet sliding mode in dealing with dynamic droplets. Meaningfully, the surface with switchable wettability exhibits long-term corrosion protection and promises a wide range of application prospects of metals such as anti-icing, drag reduction, anti-fouling, etc. |
abstract_unstemmed |
Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS on Mg alloy to improve corrosion resistance and provide different water-repellent properties. The SHS and SLIPS are fabricated based on a laser-ablated polydimethylsiloxaneAl2O3@Fe2O3 coating (PAFC). After laser processing, the irradiated PAFC consists of micro/nanostructured texture resulting in excellent superhydrophobicity. The SLIPS is fabricated by filling the lubricant into the laser-structured texture of the SHS. Then, the surface can be easily switched between the SHS and SLIPS by alcohol washing and lubricant-infusion. The non-irradiated PAFC acts as a superior and durable corrosion barrier. Notably, the switchable surface exhibits an excellent anti-corrosion ability (with large impedance modulus at 10−2 Hz about 1011 Ω cm2) in both surface states, which does not have any degradation after being immersed in 3.5 wt% NaCl aqueous solution for 60 days. The SHS and SLIPS have durable air and lubricant layers, respectively, repelling the corrosive species during the immersion test. Simultaneously, the SHS and SLIPS can delay corrosion at an artificial defect area. The SLIPS performs better in the above abilities than the SHS owing to the lubricant layer's stability and self-healing property. The SHS with droplet rolling mode has better droplet transportability, water shielding ability, and self-cleaning ability than those of the SLIPS with droplet sliding mode in dealing with dynamic droplets. Meaningfully, the surface with switchable wettability exhibits long-term corrosion protection and promises a wide range of application prospects of metals such as anti-icing, drag reduction, anti-fouling, etc. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy |
remote_bool |
true |
author2 |
Wang, Jinguo Li, Shuyi Liu, Yan Wang, Dawei Wang, Huiyuan |
author2Str |
Wang, Jinguo Li, Shuyi Liu, Yan Wang, Dawei Wang, Huiyuan |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2021.130450 |
up_date |
2024-07-06T22:14:39.475Z |
_version_ |
1803869570440626176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006692796</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131735.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2021.130450</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006692796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(21)02036-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Dongsong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Enlightened by anti-wetting living creature surfaces in nature, the superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS) have been constructed on metal materials for solving engineering problems. In this research, we design a switchable surface between the SHS and SLIPS on Mg alloy to improve corrosion resistance and provide different water-repellent properties. The SHS and SLIPS are fabricated based on a laser-ablated polydimethylsiloxaneAl2O3@Fe2O3 coating (PAFC). After laser processing, the irradiated PAFC consists of micro/nanostructured texture resulting in excellent superhydrophobicity. The SLIPS is fabricated by filling the lubricant into the laser-structured texture of the SHS. Then, the surface can be easily switched between the SHS and SLIPS by alcohol washing and lubricant-infusion. The non-irradiated PAFC acts as a superior and durable corrosion barrier. Notably, the switchable surface exhibits an excellent anti-corrosion ability (with large impedance modulus at 10−2 Hz about 1011 Ω cm2) in both surface states, which does not have any degradation after being immersed in 3.5 wt% NaCl aqueous solution for 60 days. The SHS and SLIPS have durable air and lubricant layers, respectively, repelling the corrosive species during the immersion test. Simultaneously, the SHS and SLIPS can delay corrosion at an artificial defect area. The SLIPS performs better in the above abilities than the SHS owing to the lubricant layer's stability and self-healing property. The SHS with droplet rolling mode has better droplet transportability, water shielding ability, and self-cleaning ability than those of the SLIPS with droplet sliding mode in dealing with dynamic droplets. Meaningfully, the surface with switchable wettability exhibits long-term corrosion protection and promises a wide range of application prospects of metals such as anti-icing, drag reduction, anti-fouling, etc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesium alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superhydrophobic surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slippery liquid-infused porous surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switchable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-corrosion</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jinguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shuyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dawei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Huiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">425</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:425</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">425</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
score |
7.401696 |