Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof
To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was establis...
Ausführliche Beschreibung
Autor*in: |
Wang, Jiaqi [verfasserIn] Zhang, Qiang [verfasserIn] Zhang, Jixiong [verfasserIn] Liu, Hengfeng [verfasserIn] Zhu, Gaolei [verfasserIn] Wang, Yunbo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering failure analysis - Oxford [u.a.] : Elsevier Science, 1994, 129 |
---|---|
Übergeordnetes Werk: |
volume:129 |
DOI / URN: |
10.1016/j.engfailanal.2021.105723 |
---|
Katalog-ID: |
ELV006715753 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006715753 | ||
003 | DE-627 | ||
005 | 20240215093029.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engfailanal.2021.105723 |2 doi | |
035 | |a (DE-627)ELV006715753 | ||
035 | |a (ELSEVIER)S1350-6307(21)00584-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 51.32 |2 bkl | ||
084 | |a 50.16 |2 bkl | ||
100 | 1 | |a Wang, Jiaqi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was established based on the beam theory for an elastic foundation. The maximum deflection position of a compound roof and the associated depth of the rib spalling were further calculated and determined in this study. Based on the depth of the rib spalling, we determined the force distribution of spalling coal from the mine wall. By combining the force distribution with the safety margin, we established a critical failure equation of the coal wall and further calculated the height of the spalling coal. The human factors used to control the rib spalling issue were also analyzed based on these results. Furthermore, taking the mining conditions of the Pingdingshan No. 11 coal mine as the engineering background, we simulated the mining process on the working face (Ji16-17-24030) using FLAC3D numerical modeling software and an orthogonal array testing strategy. By conducting a range analysis on the simulation results, we determined the sensitivity of each main controllable factor to a roof fall and rib spalling in the working face. The results show that the comprehensive sensitivities of the main controllable factors to roof fall and rib spalling follow the order of cohesion > support strength > mining height > distance to face > lateral force. In addition, the maximum deformation of the coal wall decreases by 0.682 mm with every 1 MPa increase in the cohesion strength of the coal body. | ||
650 | 4 | |a Roof fall and ribs spalling | |
650 | 4 | |a Compound roof | |
650 | 4 | |a Controllable factors | |
650 | 4 | |a Orthogonal test | |
650 | 4 | |a Linear regression | |
700 | 1 | |a Zhang, Qiang |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jixiong |e verfasserin |4 aut | |
700 | 1 | |a Liu, Hengfeng |e verfasserin |4 aut | |
700 | 1 | |a Zhu, Gaolei |e verfasserin |0 (orcid)0000-0002-7792-5592 |4 aut | |
700 | 1 | |a Wang, Yunbo |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Engineering failure analysis |d Oxford [u.a.] : Elsevier Science, 1994 |g 129 |h Online-Ressource |w (DE-627)320608697 |w (DE-600)2021082-6 |w (DE-576)120883619 |x 1350-6307 |7 nnns |
773 | 1 | 8 | |g volume:129 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 51.32 |j Werkstoffmechanik |q VZ |
936 | b | k | |a 50.16 |j Technische Zuverlässigkeit |j Instandhaltung |q VZ |
951 | |a AR | ||
952 | |d 129 |
author_variant |
j w jw q z qz j z jz h l hl g z gz y w yw |
---|---|
matchkey_str |
article:13506307:2021----::tdoteotolratrascaewtroflignrbsalnidemnwtge |
hierarchy_sort_str |
2021 |
bklnumber |
51.32 50.16 |
publishDate |
2021 |
allfields |
10.1016/j.engfailanal.2021.105723 doi (DE-627)ELV006715753 (ELSEVIER)S1350-6307(21)00584-7 DE-627 ger DE-627 rda eng 600 VZ 51.32 bkl 50.16 bkl Wang, Jiaqi verfasserin aut Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was established based on the beam theory for an elastic foundation. The maximum deflection position of a compound roof and the associated depth of the rib spalling were further calculated and determined in this study. Based on the depth of the rib spalling, we determined the force distribution of spalling coal from the mine wall. By combining the force distribution with the safety margin, we established a critical failure equation of the coal wall and further calculated the height of the spalling coal. The human factors used to control the rib spalling issue were also analyzed based on these results. Furthermore, taking the mining conditions of the Pingdingshan No. 11 coal mine as the engineering background, we simulated the mining process on the working face (Ji16-17-24030) using FLAC3D numerical modeling software and an orthogonal array testing strategy. By conducting a range analysis on the simulation results, we determined the sensitivity of each main controllable factor to a roof fall and rib spalling in the working face. The results show that the comprehensive sensitivities of the main controllable factors to roof fall and rib spalling follow the order of cohesion > support strength > mining height > distance to face > lateral force. In addition, the maximum deformation of the coal wall decreases by 0.682 mm with every 1 MPa increase in the cohesion strength of the coal body. Roof fall and ribs spalling Compound roof Controllable factors Orthogonal test Linear regression Zhang, Qiang verfasserin aut Zhang, Jixiong verfasserin aut Liu, Hengfeng verfasserin aut Zhu, Gaolei verfasserin (orcid)0000-0002-7792-5592 aut Wang, Yunbo verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 129 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:129 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 129 |
spelling |
10.1016/j.engfailanal.2021.105723 doi (DE-627)ELV006715753 (ELSEVIER)S1350-6307(21)00584-7 DE-627 ger DE-627 rda eng 600 VZ 51.32 bkl 50.16 bkl Wang, Jiaqi verfasserin aut Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was established based on the beam theory for an elastic foundation. The maximum deflection position of a compound roof and the associated depth of the rib spalling were further calculated and determined in this study. Based on the depth of the rib spalling, we determined the force distribution of spalling coal from the mine wall. By combining the force distribution with the safety margin, we established a critical failure equation of the coal wall and further calculated the height of the spalling coal. The human factors used to control the rib spalling issue were also analyzed based on these results. Furthermore, taking the mining conditions of the Pingdingshan No. 11 coal mine as the engineering background, we simulated the mining process on the working face (Ji16-17-24030) using FLAC3D numerical modeling software and an orthogonal array testing strategy. By conducting a range analysis on the simulation results, we determined the sensitivity of each main controllable factor to a roof fall and rib spalling in the working face. The results show that the comprehensive sensitivities of the main controllable factors to roof fall and rib spalling follow the order of cohesion > support strength > mining height > distance to face > lateral force. In addition, the maximum deformation of the coal wall decreases by 0.682 mm with every 1 MPa increase in the cohesion strength of the coal body. Roof fall and ribs spalling Compound roof Controllable factors Orthogonal test Linear regression Zhang, Qiang verfasserin aut Zhang, Jixiong verfasserin aut Liu, Hengfeng verfasserin aut Zhu, Gaolei verfasserin (orcid)0000-0002-7792-5592 aut Wang, Yunbo verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 129 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:129 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 129 |
allfields_unstemmed |
10.1016/j.engfailanal.2021.105723 doi (DE-627)ELV006715753 (ELSEVIER)S1350-6307(21)00584-7 DE-627 ger DE-627 rda eng 600 VZ 51.32 bkl 50.16 bkl Wang, Jiaqi verfasserin aut Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was established based on the beam theory for an elastic foundation. The maximum deflection position of a compound roof and the associated depth of the rib spalling were further calculated and determined in this study. Based on the depth of the rib spalling, we determined the force distribution of spalling coal from the mine wall. By combining the force distribution with the safety margin, we established a critical failure equation of the coal wall and further calculated the height of the spalling coal. The human factors used to control the rib spalling issue were also analyzed based on these results. Furthermore, taking the mining conditions of the Pingdingshan No. 11 coal mine as the engineering background, we simulated the mining process on the working face (Ji16-17-24030) using FLAC3D numerical modeling software and an orthogonal array testing strategy. By conducting a range analysis on the simulation results, we determined the sensitivity of each main controllable factor to a roof fall and rib spalling in the working face. The results show that the comprehensive sensitivities of the main controllable factors to roof fall and rib spalling follow the order of cohesion > support strength > mining height > distance to face > lateral force. In addition, the maximum deformation of the coal wall decreases by 0.682 mm with every 1 MPa increase in the cohesion strength of the coal body. Roof fall and ribs spalling Compound roof Controllable factors Orthogonal test Linear regression Zhang, Qiang verfasserin aut Zhang, Jixiong verfasserin aut Liu, Hengfeng verfasserin aut Zhu, Gaolei verfasserin (orcid)0000-0002-7792-5592 aut Wang, Yunbo verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 129 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:129 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 129 |
allfieldsGer |
10.1016/j.engfailanal.2021.105723 doi (DE-627)ELV006715753 (ELSEVIER)S1350-6307(21)00584-7 DE-627 ger DE-627 rda eng 600 VZ 51.32 bkl 50.16 bkl Wang, Jiaqi verfasserin aut Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was established based on the beam theory for an elastic foundation. The maximum deflection position of a compound roof and the associated depth of the rib spalling were further calculated and determined in this study. Based on the depth of the rib spalling, we determined the force distribution of spalling coal from the mine wall. By combining the force distribution with the safety margin, we established a critical failure equation of the coal wall and further calculated the height of the spalling coal. The human factors used to control the rib spalling issue were also analyzed based on these results. Furthermore, taking the mining conditions of the Pingdingshan No. 11 coal mine as the engineering background, we simulated the mining process on the working face (Ji16-17-24030) using FLAC3D numerical modeling software and an orthogonal array testing strategy. By conducting a range analysis on the simulation results, we determined the sensitivity of each main controllable factor to a roof fall and rib spalling in the working face. The results show that the comprehensive sensitivities of the main controllable factors to roof fall and rib spalling follow the order of cohesion > support strength > mining height > distance to face > lateral force. In addition, the maximum deformation of the coal wall decreases by 0.682 mm with every 1 MPa increase in the cohesion strength of the coal body. Roof fall and ribs spalling Compound roof Controllable factors Orthogonal test Linear regression Zhang, Qiang verfasserin aut Zhang, Jixiong verfasserin aut Liu, Hengfeng verfasserin aut Zhu, Gaolei verfasserin (orcid)0000-0002-7792-5592 aut Wang, Yunbo verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 129 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:129 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 129 |
allfieldsSound |
10.1016/j.engfailanal.2021.105723 doi (DE-627)ELV006715753 (ELSEVIER)S1350-6307(21)00584-7 DE-627 ger DE-627 rda eng 600 VZ 51.32 bkl 50.16 bkl Wang, Jiaqi verfasserin aut Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was established based on the beam theory for an elastic foundation. The maximum deflection position of a compound roof and the associated depth of the rib spalling were further calculated and determined in this study. Based on the depth of the rib spalling, we determined the force distribution of spalling coal from the mine wall. By combining the force distribution with the safety margin, we established a critical failure equation of the coal wall and further calculated the height of the spalling coal. The human factors used to control the rib spalling issue were also analyzed based on these results. Furthermore, taking the mining conditions of the Pingdingshan No. 11 coal mine as the engineering background, we simulated the mining process on the working face (Ji16-17-24030) using FLAC3D numerical modeling software and an orthogonal array testing strategy. By conducting a range analysis on the simulation results, we determined the sensitivity of each main controllable factor to a roof fall and rib spalling in the working face. The results show that the comprehensive sensitivities of the main controllable factors to roof fall and rib spalling follow the order of cohesion > support strength > mining height > distance to face > lateral force. In addition, the maximum deformation of the coal wall decreases by 0.682 mm with every 1 MPa increase in the cohesion strength of the coal body. Roof fall and ribs spalling Compound roof Controllable factors Orthogonal test Linear regression Zhang, Qiang verfasserin aut Zhang, Jixiong verfasserin aut Liu, Hengfeng verfasserin aut Zhu, Gaolei verfasserin (orcid)0000-0002-7792-5592 aut Wang, Yunbo verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 129 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:129 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 129 |
language |
English |
source |
Enthalten in Engineering failure analysis 129 volume:129 |
sourceStr |
Enthalten in Engineering failure analysis 129 volume:129 |
format_phy_str_mv |
Article |
bklname |
Werkstoffmechanik Technische Zuverlässigkeit Instandhaltung |
institution |
findex.gbv.de |
topic_facet |
Roof fall and ribs spalling Compound roof Controllable factors Orthogonal test Linear regression |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Engineering failure analysis |
authorswithroles_txt_mv |
Wang, Jiaqi @@aut@@ Zhang, Qiang @@aut@@ Zhang, Jixiong @@aut@@ Liu, Hengfeng @@aut@@ Zhu, Gaolei @@aut@@ Wang, Yunbo @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320608697 |
dewey-sort |
3600 |
id |
ELV006715753 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006715753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240215093029.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engfailanal.2021.105723</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006715753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1350-6307(21)00584-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Jiaqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was established based on the beam theory for an elastic foundation. The maximum deflection position of a compound roof and the associated depth of the rib spalling were further calculated and determined in this study. Based on the depth of the rib spalling, we determined the force distribution of spalling coal from the mine wall. By combining the force distribution with the safety margin, we established a critical failure equation of the coal wall and further calculated the height of the spalling coal. The human factors used to control the rib spalling issue were also analyzed based on these results. Furthermore, taking the mining conditions of the Pingdingshan No. 11 coal mine as the engineering background, we simulated the mining process on the working face (Ji16-17-24030) using FLAC3D numerical modeling software and an orthogonal array testing strategy. By conducting a range analysis on the simulation results, we determined the sensitivity of each main controllable factor to a roof fall and rib spalling in the working face. The results show that the comprehensive sensitivities of the main controllable factors to roof fall and rib spalling follow the order of cohesion > support strength > mining height > distance to face > lateral force. In addition, the maximum deformation of the coal wall decreases by 0.682 mm with every 1 MPa increase in the cohesion strength of the coal body.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roof fall and ribs spalling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compound roof</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Controllable factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear regression</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jixiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Hengfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Gaolei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7792-5592</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yunbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering failure analysis</subfield><subfield code="d">Oxford [u.a.] : Elsevier Science, 1994</subfield><subfield code="g">129</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320608697</subfield><subfield code="w">(DE-600)2021082-6</subfield><subfield code="w">(DE-576)120883619</subfield><subfield code="x">1350-6307</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">129</subfield></datafield></record></collection>
|
author |
Wang, Jiaqi |
spellingShingle |
Wang, Jiaqi ddc 600 bkl 51.32 bkl 50.16 misc Roof fall and ribs spalling misc Compound roof misc Controllable factors misc Orthogonal test misc Linear regression Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof |
authorStr |
Wang, Jiaqi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320608697 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1350-6307 |
topic_title |
600 VZ 51.32 bkl 50.16 bkl Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof Roof fall and ribs spalling Compound roof Controllable factors Orthogonal test Linear regression |
topic |
ddc 600 bkl 51.32 bkl 50.16 misc Roof fall and ribs spalling misc Compound roof misc Controllable factors misc Orthogonal test misc Linear regression |
topic_unstemmed |
ddc 600 bkl 51.32 bkl 50.16 misc Roof fall and ribs spalling misc Compound roof misc Controllable factors misc Orthogonal test misc Linear regression |
topic_browse |
ddc 600 bkl 51.32 bkl 50.16 misc Roof fall and ribs spalling misc Compound roof misc Controllable factors misc Orthogonal test misc Linear regression |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering failure analysis |
hierarchy_parent_id |
320608697 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Engineering failure analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 |
title |
Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof |
ctrlnum |
(DE-627)ELV006715753 (ELSEVIER)S1350-6307(21)00584-7 |
title_full |
Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof |
author_sort |
Wang, Jiaqi |
journal |
Engineering failure analysis |
journalStr |
Engineering failure analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Jiaqi Zhang, Qiang Zhang, Jixiong Liu, Hengfeng Zhu, Gaolei Wang, Yunbo |
container_volume |
129 |
class |
600 VZ 51.32 bkl 50.16 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Jiaqi |
doi_str_mv |
10.1016/j.engfailanal.2021.105723 |
normlink |
(ORCID)0000-0002-7792-5592 |
normlink_prefix_str_mv |
(orcid)0000-0002-7792-5592 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof |
title_auth |
Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof |
abstract |
To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was established based on the beam theory for an elastic foundation. The maximum deflection position of a compound roof and the associated depth of the rib spalling were further calculated and determined in this study. Based on the depth of the rib spalling, we determined the force distribution of spalling coal from the mine wall. By combining the force distribution with the safety margin, we established a critical failure equation of the coal wall and further calculated the height of the spalling coal. The human factors used to control the rib spalling issue were also analyzed based on these results. Furthermore, taking the mining conditions of the Pingdingshan No. 11 coal mine as the engineering background, we simulated the mining process on the working face (Ji16-17-24030) using FLAC3D numerical modeling software and an orthogonal array testing strategy. By conducting a range analysis on the simulation results, we determined the sensitivity of each main controllable factor to a roof fall and rib spalling in the working face. The results show that the comprehensive sensitivities of the main controllable factors to roof fall and rib spalling follow the order of cohesion > support strength > mining height > distance to face > lateral force. In addition, the maximum deformation of the coal wall decreases by 0.682 mm with every 1 MPa increase in the cohesion strength of the coal body. |
abstractGer |
To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was established based on the beam theory for an elastic foundation. The maximum deflection position of a compound roof and the associated depth of the rib spalling were further calculated and determined in this study. Based on the depth of the rib spalling, we determined the force distribution of spalling coal from the mine wall. By combining the force distribution with the safety margin, we established a critical failure equation of the coal wall and further calculated the height of the spalling coal. The human factors used to control the rib spalling issue were also analyzed based on these results. Furthermore, taking the mining conditions of the Pingdingshan No. 11 coal mine as the engineering background, we simulated the mining process on the working face (Ji16-17-24030) using FLAC3D numerical modeling software and an orthogonal array testing strategy. By conducting a range analysis on the simulation results, we determined the sensitivity of each main controllable factor to a roof fall and rib spalling in the working face. The results show that the comprehensive sensitivities of the main controllable factors to roof fall and rib spalling follow the order of cohesion > support strength > mining height > distance to face > lateral force. In addition, the maximum deformation of the coal wall decreases by 0.682 mm with every 1 MPa increase in the cohesion strength of the coal body. |
abstract_unstemmed |
To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was established based on the beam theory for an elastic foundation. The maximum deflection position of a compound roof and the associated depth of the rib spalling were further calculated and determined in this study. Based on the depth of the rib spalling, we determined the force distribution of spalling coal from the mine wall. By combining the force distribution with the safety margin, we established a critical failure equation of the coal wall and further calculated the height of the spalling coal. The human factors used to control the rib spalling issue were also analyzed based on these results. Furthermore, taking the mining conditions of the Pingdingshan No. 11 coal mine as the engineering background, we simulated the mining process on the working face (Ji16-17-24030) using FLAC3D numerical modeling software and an orthogonal array testing strategy. By conducting a range analysis on the simulation results, we determined the sensitivity of each main controllable factor to a roof fall and rib spalling in the working face. The results show that the comprehensive sensitivities of the main controllable factors to roof fall and rib spalling follow the order of cohesion > support strength > mining height > distance to face > lateral force. In addition, the maximum deformation of the coal wall decreases by 0.682 mm with every 1 MPa increase in the cohesion strength of the coal body. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof |
remote_bool |
true |
author2 |
Zhang, Qiang Zhang, Jixiong Liu, Hengfeng Zhu, Gaolei Wang, Yunbo |
author2Str |
Zhang, Qiang Zhang, Jixiong Liu, Hengfeng Zhu, Gaolei Wang, Yunbo |
ppnlink |
320608697 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.engfailanal.2021.105723 |
up_date |
2024-07-06T22:19:18.992Z |
_version_ |
1803869863536492544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006715753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240215093029.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engfailanal.2021.105723</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006715753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1350-6307(21)00584-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Jiaqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To analyze the controllable factors associated with roof fall and rib spalling during the mining process in a deep well with a great mining height and compound roof, and to resolve such issues during the mining process, a mechanical model for describing the deflection of a compound roof was established based on the beam theory for an elastic foundation. The maximum deflection position of a compound roof and the associated depth of the rib spalling were further calculated and determined in this study. Based on the depth of the rib spalling, we determined the force distribution of spalling coal from the mine wall. By combining the force distribution with the safety margin, we established a critical failure equation of the coal wall and further calculated the height of the spalling coal. The human factors used to control the rib spalling issue were also analyzed based on these results. Furthermore, taking the mining conditions of the Pingdingshan No. 11 coal mine as the engineering background, we simulated the mining process on the working face (Ji16-17-24030) using FLAC3D numerical modeling software and an orthogonal array testing strategy. By conducting a range analysis on the simulation results, we determined the sensitivity of each main controllable factor to a roof fall and rib spalling in the working face. The results show that the comprehensive sensitivities of the main controllable factors to roof fall and rib spalling follow the order of cohesion > support strength > mining height > distance to face > lateral force. In addition, the maximum deformation of the coal wall decreases by 0.682 mm with every 1 MPa increase in the cohesion strength of the coal body.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roof fall and ribs spalling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compound roof</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Controllable factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear regression</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jixiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Hengfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Gaolei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7792-5592</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yunbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering failure analysis</subfield><subfield code="d">Oxford [u.a.] : Elsevier Science, 1994</subfield><subfield code="g">129</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320608697</subfield><subfield code="w">(DE-600)2021082-6</subfield><subfield code="w">(DE-576)120883619</subfield><subfield code="x">1350-6307</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">129</subfield></datafield></record></collection>
|
score |
7.4010506 |