Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot
Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure t...
Ausführliche Beschreibung
Autor*in: |
Xu, Wenfu [verfasserIn] Yan, Panhui [verfasserIn] Wang, Fengxu [verfasserIn] Yuan, Han [verfasserIn] Liang, Bin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Mechanical systems and signal processing - Amsterdam [u.a.] : Elsevier, 1987, 165 |
---|---|
Übergeordnetes Werk: |
volume:165 |
DOI / URN: |
10.1016/j.ymssp.2021.108347 |
---|
Katalog-ID: |
ELV006761100 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006761100 | ||
003 | DE-627 | ||
005 | 20230524154755.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ymssp.2021.108347 |2 doi | |
035 | |a (DE-627)ELV006761100 | ||
035 | |a (ELSEVIER)S0888-3270(21)00703-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 50.32 |2 bkl | ||
084 | |a 50.16 |2 bkl | ||
100 | 1 | |a Xu, Wenfu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure the joint position. To solve the above problems, this paper proposed a vision-based method for cable-driven robots to simultaneously measure the manipulator configuration and the target pose. The configuration is reconstructed through the detection of Apriltag 2D code and the kinematics model of cable-driven robots. The target detection method in this paper consists of the template matching method and the natural features detection. Experiments are carried out to verify the method proposed in this article, including kinematic parameters calibration, arm-shape measurement, target pose measurement and docking test. The results show that the average position error of the robot end-effector decreases from 9.12 mm to 1.86 mm after calibration. The links’ position errors measured by the method in this paper are less than 10 mm. The position and the angle errors are respectively 2 mm and 1° at the target pose measurement, and the success rate of docking experiment is more than 98%. The experimental results show that the simultaneous measurement method of manipulator configuration and target pose proposed in this paper has a great effect on improving the motion accuracy and the working ability of the intelligent cable-driven robot. | ||
650 | 4 | |a Cable-driven robot | |
650 | 4 | |a Configuration measurement | |
650 | 4 | |a Target pose measurement | |
650 | 4 | |a Kinematic calibration | |
650 | 4 | |a Visual measurement system | |
700 | 1 | |a Yan, Panhui |e verfasserin |4 aut | |
700 | 1 | |a Wang, Fengxu |e verfasserin |4 aut | |
700 | 1 | |a Yuan, Han |e verfasserin |4 aut | |
700 | 1 | |a Liang, Bin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mechanical systems and signal processing |d Amsterdam [u.a.] : Elsevier, 1987 |g 165 |h Online-Ressource |w (DE-627)267838670 |w (DE-600)1471003-1 |w (DE-576)253127629 |x 1096-1216 |7 nnns |
773 | 1 | 8 | |g volume:165 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.32 |j Dynamik |j Schwingungslehre |x Technische Mechanik |
936 | b | k | |a 50.16 |j Technische Zuverlässigkeit |j Instandhaltung |
951 | |a AR | ||
952 | |d 165 |
author_variant |
w x wx p y py f w fw h y hy b l bl |
---|---|
matchkey_str |
article:10961216:2021----::iinaesmlaeumaueetfaiuaocniuainntrepsfrn |
hierarchy_sort_str |
2021 |
bklnumber |
50.32 50.16 |
publishDate |
2021 |
allfields |
10.1016/j.ymssp.2021.108347 doi (DE-627)ELV006761100 (ELSEVIER)S0888-3270(21)00703-2 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Xu, Wenfu verfasserin aut Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure the joint position. To solve the above problems, this paper proposed a vision-based method for cable-driven robots to simultaneously measure the manipulator configuration and the target pose. The configuration is reconstructed through the detection of Apriltag 2D code and the kinematics model of cable-driven robots. The target detection method in this paper consists of the template matching method and the natural features detection. Experiments are carried out to verify the method proposed in this article, including kinematic parameters calibration, arm-shape measurement, target pose measurement and docking test. The results show that the average position error of the robot end-effector decreases from 9.12 mm to 1.86 mm after calibration. The links’ position errors measured by the method in this paper are less than 10 mm. The position and the angle errors are respectively 2 mm and 1° at the target pose measurement, and the success rate of docking experiment is more than 98%. The experimental results show that the simultaneous measurement method of manipulator configuration and target pose proposed in this paper has a great effect on improving the motion accuracy and the working ability of the intelligent cable-driven robot. Cable-driven robot Configuration measurement Target pose measurement Kinematic calibration Visual measurement system Yan, Panhui verfasserin aut Wang, Fengxu verfasserin aut Yuan, Han verfasserin aut Liang, Bin verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 165 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 165 |
spelling |
10.1016/j.ymssp.2021.108347 doi (DE-627)ELV006761100 (ELSEVIER)S0888-3270(21)00703-2 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Xu, Wenfu verfasserin aut Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure the joint position. To solve the above problems, this paper proposed a vision-based method for cable-driven robots to simultaneously measure the manipulator configuration and the target pose. The configuration is reconstructed through the detection of Apriltag 2D code and the kinematics model of cable-driven robots. The target detection method in this paper consists of the template matching method and the natural features detection. Experiments are carried out to verify the method proposed in this article, including kinematic parameters calibration, arm-shape measurement, target pose measurement and docking test. The results show that the average position error of the robot end-effector decreases from 9.12 mm to 1.86 mm after calibration. The links’ position errors measured by the method in this paper are less than 10 mm. The position and the angle errors are respectively 2 mm and 1° at the target pose measurement, and the success rate of docking experiment is more than 98%. The experimental results show that the simultaneous measurement method of manipulator configuration and target pose proposed in this paper has a great effect on improving the motion accuracy and the working ability of the intelligent cable-driven robot. Cable-driven robot Configuration measurement Target pose measurement Kinematic calibration Visual measurement system Yan, Panhui verfasserin aut Wang, Fengxu verfasserin aut Yuan, Han verfasserin aut Liang, Bin verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 165 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 165 |
allfields_unstemmed |
10.1016/j.ymssp.2021.108347 doi (DE-627)ELV006761100 (ELSEVIER)S0888-3270(21)00703-2 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Xu, Wenfu verfasserin aut Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure the joint position. To solve the above problems, this paper proposed a vision-based method for cable-driven robots to simultaneously measure the manipulator configuration and the target pose. The configuration is reconstructed through the detection of Apriltag 2D code and the kinematics model of cable-driven robots. The target detection method in this paper consists of the template matching method and the natural features detection. Experiments are carried out to verify the method proposed in this article, including kinematic parameters calibration, arm-shape measurement, target pose measurement and docking test. The results show that the average position error of the robot end-effector decreases from 9.12 mm to 1.86 mm after calibration. The links’ position errors measured by the method in this paper are less than 10 mm. The position and the angle errors are respectively 2 mm and 1° at the target pose measurement, and the success rate of docking experiment is more than 98%. The experimental results show that the simultaneous measurement method of manipulator configuration and target pose proposed in this paper has a great effect on improving the motion accuracy and the working ability of the intelligent cable-driven robot. Cable-driven robot Configuration measurement Target pose measurement Kinematic calibration Visual measurement system Yan, Panhui verfasserin aut Wang, Fengxu verfasserin aut Yuan, Han verfasserin aut Liang, Bin verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 165 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 165 |
allfieldsGer |
10.1016/j.ymssp.2021.108347 doi (DE-627)ELV006761100 (ELSEVIER)S0888-3270(21)00703-2 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Xu, Wenfu verfasserin aut Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure the joint position. To solve the above problems, this paper proposed a vision-based method for cable-driven robots to simultaneously measure the manipulator configuration and the target pose. The configuration is reconstructed through the detection of Apriltag 2D code and the kinematics model of cable-driven robots. The target detection method in this paper consists of the template matching method and the natural features detection. Experiments are carried out to verify the method proposed in this article, including kinematic parameters calibration, arm-shape measurement, target pose measurement and docking test. The results show that the average position error of the robot end-effector decreases from 9.12 mm to 1.86 mm after calibration. The links’ position errors measured by the method in this paper are less than 10 mm. The position and the angle errors are respectively 2 mm and 1° at the target pose measurement, and the success rate of docking experiment is more than 98%. The experimental results show that the simultaneous measurement method of manipulator configuration and target pose proposed in this paper has a great effect on improving the motion accuracy and the working ability of the intelligent cable-driven robot. Cable-driven robot Configuration measurement Target pose measurement Kinematic calibration Visual measurement system Yan, Panhui verfasserin aut Wang, Fengxu verfasserin aut Yuan, Han verfasserin aut Liang, Bin verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 165 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 165 |
allfieldsSound |
10.1016/j.ymssp.2021.108347 doi (DE-627)ELV006761100 (ELSEVIER)S0888-3270(21)00703-2 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Xu, Wenfu verfasserin aut Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure the joint position. To solve the above problems, this paper proposed a vision-based method for cable-driven robots to simultaneously measure the manipulator configuration and the target pose. The configuration is reconstructed through the detection of Apriltag 2D code and the kinematics model of cable-driven robots. The target detection method in this paper consists of the template matching method and the natural features detection. Experiments are carried out to verify the method proposed in this article, including kinematic parameters calibration, arm-shape measurement, target pose measurement and docking test. The results show that the average position error of the robot end-effector decreases from 9.12 mm to 1.86 mm after calibration. The links’ position errors measured by the method in this paper are less than 10 mm. The position and the angle errors are respectively 2 mm and 1° at the target pose measurement, and the success rate of docking experiment is more than 98%. The experimental results show that the simultaneous measurement method of manipulator configuration and target pose proposed in this paper has a great effect on improving the motion accuracy and the working ability of the intelligent cable-driven robot. Cable-driven robot Configuration measurement Target pose measurement Kinematic calibration Visual measurement system Yan, Panhui verfasserin aut Wang, Fengxu verfasserin aut Yuan, Han verfasserin aut Liang, Bin verfasserin aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 165 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:165 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 165 |
language |
English |
source |
Enthalten in Mechanical systems and signal processing 165 volume:165 |
sourceStr |
Enthalten in Mechanical systems and signal processing 165 volume:165 |
format_phy_str_mv |
Article |
bklname |
Dynamik Schwingungslehre Technische Zuverlässigkeit Instandhaltung |
institution |
findex.gbv.de |
topic_facet |
Cable-driven robot Configuration measurement Target pose measurement Kinematic calibration Visual measurement system |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Mechanical systems and signal processing |
authorswithroles_txt_mv |
Xu, Wenfu @@aut@@ Yan, Panhui @@aut@@ Wang, Fengxu @@aut@@ Yuan, Han @@aut@@ Liang, Bin @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
267838670 |
dewey-sort |
14 |
id |
ELV006761100 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006761100</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154755.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2021.108347</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006761100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(21)00703-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Wenfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure the joint position. To solve the above problems, this paper proposed a vision-based method for cable-driven robots to simultaneously measure the manipulator configuration and the target pose. The configuration is reconstructed through the detection of Apriltag 2D code and the kinematics model of cable-driven robots. The target detection method in this paper consists of the template matching method and the natural features detection. Experiments are carried out to verify the method proposed in this article, including kinematic parameters calibration, arm-shape measurement, target pose measurement and docking test. The results show that the average position error of the robot end-effector decreases from 9.12 mm to 1.86 mm after calibration. The links’ position errors measured by the method in this paper are less than 10 mm. The position and the angle errors are respectively 2 mm and 1° at the target pose measurement, and the success rate of docking experiment is more than 98%. The experimental results show that the simultaneous measurement method of manipulator configuration and target pose proposed in this paper has a great effect on improving the motion accuracy and the working ability of the intelligent cable-driven robot.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cable-driven robot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Configuration measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Target pose measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinematic calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual measurement system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Panhui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Fengxu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Bin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanical systems and signal processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1987</subfield><subfield code="g">165</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267838670</subfield><subfield code="w">(DE-600)1471003-1</subfield><subfield code="w">(DE-576)253127629</subfield><subfield code="x">1096-1216</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield></datafield></record></collection>
|
author |
Xu, Wenfu |
spellingShingle |
Xu, Wenfu ddc 004 bkl 50.32 bkl 50.16 misc Cable-driven robot misc Configuration measurement misc Target pose measurement misc Kinematic calibration misc Visual measurement system Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot |
authorStr |
Xu, Wenfu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)267838670 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1096-1216 |
topic_title |
004 DE-600 50.32 bkl 50.16 bkl Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot Cable-driven robot Configuration measurement Target pose measurement Kinematic calibration Visual measurement system |
topic |
ddc 004 bkl 50.32 bkl 50.16 misc Cable-driven robot misc Configuration measurement misc Target pose measurement misc Kinematic calibration misc Visual measurement system |
topic_unstemmed |
ddc 004 bkl 50.32 bkl 50.16 misc Cable-driven robot misc Configuration measurement misc Target pose measurement misc Kinematic calibration misc Visual measurement system |
topic_browse |
ddc 004 bkl 50.32 bkl 50.16 misc Cable-driven robot misc Configuration measurement misc Target pose measurement misc Kinematic calibration misc Visual measurement system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mechanical systems and signal processing |
hierarchy_parent_id |
267838670 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Mechanical systems and signal processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 |
title |
Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot |
ctrlnum |
(DE-627)ELV006761100 (ELSEVIER)S0888-3270(21)00703-2 |
title_full |
Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot |
author_sort |
Xu, Wenfu |
journal |
Mechanical systems and signal processing |
journalStr |
Mechanical systems and signal processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Xu, Wenfu Yan, Panhui Wang, Fengxu Yuan, Han Liang, Bin |
container_volume |
165 |
class |
004 DE-600 50.32 bkl 50.16 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xu, Wenfu |
doi_str_mv |
10.1016/j.ymssp.2021.108347 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot |
title_auth |
Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot |
abstract |
Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure the joint position. To solve the above problems, this paper proposed a vision-based method for cable-driven robots to simultaneously measure the manipulator configuration and the target pose. The configuration is reconstructed through the detection of Apriltag 2D code and the kinematics model of cable-driven robots. The target detection method in this paper consists of the template matching method and the natural features detection. Experiments are carried out to verify the method proposed in this article, including kinematic parameters calibration, arm-shape measurement, target pose measurement and docking test. The results show that the average position error of the robot end-effector decreases from 9.12 mm to 1.86 mm after calibration. The links’ position errors measured by the method in this paper are less than 10 mm. The position and the angle errors are respectively 2 mm and 1° at the target pose measurement, and the success rate of docking experiment is more than 98%. The experimental results show that the simultaneous measurement method of manipulator configuration and target pose proposed in this paper has a great effect on improving the motion accuracy and the working ability of the intelligent cable-driven robot. |
abstractGer |
Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure the joint position. To solve the above problems, this paper proposed a vision-based method for cable-driven robots to simultaneously measure the manipulator configuration and the target pose. The configuration is reconstructed through the detection of Apriltag 2D code and the kinematics model of cable-driven robots. The target detection method in this paper consists of the template matching method and the natural features detection. Experiments are carried out to verify the method proposed in this article, including kinematic parameters calibration, arm-shape measurement, target pose measurement and docking test. The results show that the average position error of the robot end-effector decreases from 9.12 mm to 1.86 mm after calibration. The links’ position errors measured by the method in this paper are less than 10 mm. The position and the angle errors are respectively 2 mm and 1° at the target pose measurement, and the success rate of docking experiment is more than 98%. The experimental results show that the simultaneous measurement method of manipulator configuration and target pose proposed in this paper has a great effect on improving the motion accuracy and the working ability of the intelligent cable-driven robot. |
abstract_unstemmed |
Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure the joint position. To solve the above problems, this paper proposed a vision-based method for cable-driven robots to simultaneously measure the manipulator configuration and the target pose. The configuration is reconstructed through the detection of Apriltag 2D code and the kinematics model of cable-driven robots. The target detection method in this paper consists of the template matching method and the natural features detection. Experiments are carried out to verify the method proposed in this article, including kinematic parameters calibration, arm-shape measurement, target pose measurement and docking test. The results show that the average position error of the robot end-effector decreases from 9.12 mm to 1.86 mm after calibration. The links’ position errors measured by the method in this paper are less than 10 mm. The position and the angle errors are respectively 2 mm and 1° at the target pose measurement, and the success rate of docking experiment is more than 98%. The experimental results show that the simultaneous measurement method of manipulator configuration and target pose proposed in this paper has a great effect on improving the motion accuracy and the working ability of the intelligent cable-driven robot. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot |
remote_bool |
true |
author2 |
Yan, Panhui Wang, Fengxu Yuan, Han Liang, Bin |
author2Str |
Yan, Panhui Wang, Fengxu Yuan, Han Liang, Bin |
ppnlink |
267838670 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ymssp.2021.108347 |
up_date |
2024-07-06T22:28:22.045Z |
_version_ |
1803870432968835072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006761100</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154755.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2021.108347</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006761100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(21)00703-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Wenfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cable-driven robots have great application potentials in confined spaces due to their light and slim bodies. However, their kinematic accuracy is generally much lower than that of the traditional articulated manipulators, because it is difficult to install sensors on its joints to directly measure the joint position. To solve the above problems, this paper proposed a vision-based method for cable-driven robots to simultaneously measure the manipulator configuration and the target pose. The configuration is reconstructed through the detection of Apriltag 2D code and the kinematics model of cable-driven robots. The target detection method in this paper consists of the template matching method and the natural features detection. Experiments are carried out to verify the method proposed in this article, including kinematic parameters calibration, arm-shape measurement, target pose measurement and docking test. The results show that the average position error of the robot end-effector decreases from 9.12 mm to 1.86 mm after calibration. The links’ position errors measured by the method in this paper are less than 10 mm. The position and the angle errors are respectively 2 mm and 1° at the target pose measurement, and the success rate of docking experiment is more than 98%. The experimental results show that the simultaneous measurement method of manipulator configuration and target pose proposed in this paper has a great effect on improving the motion accuracy and the working ability of the intelligent cable-driven robot.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cable-driven robot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Configuration measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Target pose measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinematic calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual measurement system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Panhui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Fengxu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Bin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanical systems and signal processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1987</subfield><subfield code="g">165</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267838670</subfield><subfield code="w">(DE-600)1471003-1</subfield><subfield code="w">(DE-576)253127629</subfield><subfield code="x">1096-1216</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield></datafield></record></collection>
|
score |
7.401758 |