Online updating extended belief rule-based system for sensor-based activity recognition
Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focu...
Ausführliche Beschreibung
Autor*in: |
Yang, Long-Hao [verfasserIn] Liu, Jun [verfasserIn] Wang, Ying-Ming [verfasserIn] Nugent, Chris [verfasserIn] Martínez, Luis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Expert systems with applications - Amsterdam [u.a.] : Elsevier Science, 1990, 186 |
---|---|
Übergeordnetes Werk: |
volume:186 |
DOI / URN: |
10.1016/j.eswa.2021.115737 |
---|
Katalog-ID: |
ELV006790771 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006790771 | ||
003 | DE-627 | ||
005 | 20231028093021.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eswa.2021.115737 |2 doi | |
035 | |a (DE-627)ELV006790771 | ||
035 | |a (ELSEVIER)S0957-4174(21)01116-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Yang, Long-Hao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Online updating extended belief rule-based system for sensor-based activity recognition |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focuses on the extended belief rule-based system (EBRBS), which offered promising performance compared with popular benchmark AR models and exhibited a high robustness in the situation of sensor failure. Nevertheless, efficiency remains one of the major issues to be improved for determining and updating the extended belief rule base (EBRB) within the EBRBS. This is critical for further utilizing the EBRBS in AR situations within dynamic smart environments. An eigendecomposition-based sensor selection method is firstly proposed to select an effective subset of sensors and to also enable efficient implementation to facilitate online AR. A novel domain division-based rule generation method is also proposed to generate and update an EBRB efficiently when new sensor data are available or when some sensors should be included or excluded in the EBRB. The combination of these two methods leads to an enhanced EBRBS, called online updating EBRBS. Two datasets (in a balanced class situation) obtained from simulation and actual environments are studied to provide detailed experimental analysis as a preliminary study and basis to handle further the imbalanced situation of real AR. The experimental results demonstrate an enhanced performance of the online updating EBRBS compared with the original EBRBS and some benchmark AR models, in terms of efficiency and effectiveness. | ||
650 | 4 | |a Extended belief rule base | |
650 | 4 | |a Online model updating | |
650 | 4 | |a Feature selection | |
650 | 4 | |a Activity recognition | |
650 | 4 | |a Smart environment | |
700 | 1 | |a Liu, Jun |e verfasserin |4 aut | |
700 | 1 | |a Wang, Ying-Ming |e verfasserin |4 aut | |
700 | 1 | |a Nugent, Chris |e verfasserin |4 aut | |
700 | 1 | |a Martínez, Luis |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Expert systems with applications |d Amsterdam [u.a.] : Elsevier Science, 1990 |g 186 |h Online-Ressource |w (DE-627)320577961 |w (DE-600)2017237-0 |w (DE-576)11481807X |7 nnns |
773 | 1 | 8 | |g volume:186 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q VZ |
951 | |a AR | ||
952 | |d 186 |
author_variant |
l h y lhy j l jl y m w ymw c n cn l m lm |
---|---|
matchkey_str |
yanglonghaoliujunwangyingmingnugentchris:2021----:niepaigxeddeifueaessefresrae |
hierarchy_sort_str |
2021 |
bklnumber |
54.72 |
publishDate |
2021 |
allfields |
10.1016/j.eswa.2021.115737 doi (DE-627)ELV006790771 (ELSEVIER)S0957-4174(21)01116-7 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Yang, Long-Hao verfasserin aut Online updating extended belief rule-based system for sensor-based activity recognition 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focuses on the extended belief rule-based system (EBRBS), which offered promising performance compared with popular benchmark AR models and exhibited a high robustness in the situation of sensor failure. Nevertheless, efficiency remains one of the major issues to be improved for determining and updating the extended belief rule base (EBRB) within the EBRBS. This is critical for further utilizing the EBRBS in AR situations within dynamic smart environments. An eigendecomposition-based sensor selection method is firstly proposed to select an effective subset of sensors and to also enable efficient implementation to facilitate online AR. A novel domain division-based rule generation method is also proposed to generate and update an EBRB efficiently when new sensor data are available or when some sensors should be included or excluded in the EBRB. The combination of these two methods leads to an enhanced EBRBS, called online updating EBRBS. Two datasets (in a balanced class situation) obtained from simulation and actual environments are studied to provide detailed experimental analysis as a preliminary study and basis to handle further the imbalanced situation of real AR. The experimental results demonstrate an enhanced performance of the online updating EBRBS compared with the original EBRBS and some benchmark AR models, in terms of efficiency and effectiveness. Extended belief rule base Online model updating Feature selection Activity recognition Smart environment Liu, Jun verfasserin aut Wang, Ying-Ming verfasserin aut Nugent, Chris verfasserin aut Martínez, Luis verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 186 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:186 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz VZ AR 186 |
spelling |
10.1016/j.eswa.2021.115737 doi (DE-627)ELV006790771 (ELSEVIER)S0957-4174(21)01116-7 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Yang, Long-Hao verfasserin aut Online updating extended belief rule-based system for sensor-based activity recognition 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focuses on the extended belief rule-based system (EBRBS), which offered promising performance compared with popular benchmark AR models and exhibited a high robustness in the situation of sensor failure. Nevertheless, efficiency remains one of the major issues to be improved for determining and updating the extended belief rule base (EBRB) within the EBRBS. This is critical for further utilizing the EBRBS in AR situations within dynamic smart environments. An eigendecomposition-based sensor selection method is firstly proposed to select an effective subset of sensors and to also enable efficient implementation to facilitate online AR. A novel domain division-based rule generation method is also proposed to generate and update an EBRB efficiently when new sensor data are available or when some sensors should be included or excluded in the EBRB. The combination of these two methods leads to an enhanced EBRBS, called online updating EBRBS. Two datasets (in a balanced class situation) obtained from simulation and actual environments are studied to provide detailed experimental analysis as a preliminary study and basis to handle further the imbalanced situation of real AR. The experimental results demonstrate an enhanced performance of the online updating EBRBS compared with the original EBRBS and some benchmark AR models, in terms of efficiency and effectiveness. Extended belief rule base Online model updating Feature selection Activity recognition Smart environment Liu, Jun verfasserin aut Wang, Ying-Ming verfasserin aut Nugent, Chris verfasserin aut Martínez, Luis verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 186 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:186 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz VZ AR 186 |
allfields_unstemmed |
10.1016/j.eswa.2021.115737 doi (DE-627)ELV006790771 (ELSEVIER)S0957-4174(21)01116-7 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Yang, Long-Hao verfasserin aut Online updating extended belief rule-based system for sensor-based activity recognition 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focuses on the extended belief rule-based system (EBRBS), which offered promising performance compared with popular benchmark AR models and exhibited a high robustness in the situation of sensor failure. Nevertheless, efficiency remains one of the major issues to be improved for determining and updating the extended belief rule base (EBRB) within the EBRBS. This is critical for further utilizing the EBRBS in AR situations within dynamic smart environments. An eigendecomposition-based sensor selection method is firstly proposed to select an effective subset of sensors and to also enable efficient implementation to facilitate online AR. A novel domain division-based rule generation method is also proposed to generate and update an EBRB efficiently when new sensor data are available or when some sensors should be included or excluded in the EBRB. The combination of these two methods leads to an enhanced EBRBS, called online updating EBRBS. Two datasets (in a balanced class situation) obtained from simulation and actual environments are studied to provide detailed experimental analysis as a preliminary study and basis to handle further the imbalanced situation of real AR. The experimental results demonstrate an enhanced performance of the online updating EBRBS compared with the original EBRBS and some benchmark AR models, in terms of efficiency and effectiveness. Extended belief rule base Online model updating Feature selection Activity recognition Smart environment Liu, Jun verfasserin aut Wang, Ying-Ming verfasserin aut Nugent, Chris verfasserin aut Martínez, Luis verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 186 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:186 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz VZ AR 186 |
allfieldsGer |
10.1016/j.eswa.2021.115737 doi (DE-627)ELV006790771 (ELSEVIER)S0957-4174(21)01116-7 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Yang, Long-Hao verfasserin aut Online updating extended belief rule-based system for sensor-based activity recognition 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focuses on the extended belief rule-based system (EBRBS), which offered promising performance compared with popular benchmark AR models and exhibited a high robustness in the situation of sensor failure. Nevertheless, efficiency remains one of the major issues to be improved for determining and updating the extended belief rule base (EBRB) within the EBRBS. This is critical for further utilizing the EBRBS in AR situations within dynamic smart environments. An eigendecomposition-based sensor selection method is firstly proposed to select an effective subset of sensors and to also enable efficient implementation to facilitate online AR. A novel domain division-based rule generation method is also proposed to generate and update an EBRB efficiently when new sensor data are available or when some sensors should be included or excluded in the EBRB. The combination of these two methods leads to an enhanced EBRBS, called online updating EBRBS. Two datasets (in a balanced class situation) obtained from simulation and actual environments are studied to provide detailed experimental analysis as a preliminary study and basis to handle further the imbalanced situation of real AR. The experimental results demonstrate an enhanced performance of the online updating EBRBS compared with the original EBRBS and some benchmark AR models, in terms of efficiency and effectiveness. Extended belief rule base Online model updating Feature selection Activity recognition Smart environment Liu, Jun verfasserin aut Wang, Ying-Ming verfasserin aut Nugent, Chris verfasserin aut Martínez, Luis verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 186 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:186 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz VZ AR 186 |
allfieldsSound |
10.1016/j.eswa.2021.115737 doi (DE-627)ELV006790771 (ELSEVIER)S0957-4174(21)01116-7 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Yang, Long-Hao verfasserin aut Online updating extended belief rule-based system for sensor-based activity recognition 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focuses on the extended belief rule-based system (EBRBS), which offered promising performance compared with popular benchmark AR models and exhibited a high robustness in the situation of sensor failure. Nevertheless, efficiency remains one of the major issues to be improved for determining and updating the extended belief rule base (EBRB) within the EBRBS. This is critical for further utilizing the EBRBS in AR situations within dynamic smart environments. An eigendecomposition-based sensor selection method is firstly proposed to select an effective subset of sensors and to also enable efficient implementation to facilitate online AR. A novel domain division-based rule generation method is also proposed to generate and update an EBRB efficiently when new sensor data are available or when some sensors should be included or excluded in the EBRB. The combination of these two methods leads to an enhanced EBRBS, called online updating EBRBS. Two datasets (in a balanced class situation) obtained from simulation and actual environments are studied to provide detailed experimental analysis as a preliminary study and basis to handle further the imbalanced situation of real AR. The experimental results demonstrate an enhanced performance of the online updating EBRBS compared with the original EBRBS and some benchmark AR models, in terms of efficiency and effectiveness. Extended belief rule base Online model updating Feature selection Activity recognition Smart environment Liu, Jun verfasserin aut Wang, Ying-Ming verfasserin aut Nugent, Chris verfasserin aut Martínez, Luis verfasserin aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 186 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:186 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz VZ AR 186 |
language |
English |
source |
Enthalten in Expert systems with applications 186 volume:186 |
sourceStr |
Enthalten in Expert systems with applications 186 volume:186 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Extended belief rule base Online model updating Feature selection Activity recognition Smart environment |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Expert systems with applications |
authorswithroles_txt_mv |
Yang, Long-Hao @@aut@@ Liu, Jun @@aut@@ Wang, Ying-Ming @@aut@@ Nugent, Chris @@aut@@ Martínez, Luis @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320577961 |
dewey-sort |
14 |
id |
ELV006790771 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006790771</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231028093021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2021.115737</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006790771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(21)01116-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Long-Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Online updating extended belief rule-based system for sensor-based activity recognition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focuses on the extended belief rule-based system (EBRBS), which offered promising performance compared with popular benchmark AR models and exhibited a high robustness in the situation of sensor failure. Nevertheless, efficiency remains one of the major issues to be improved for determining and updating the extended belief rule base (EBRB) within the EBRBS. This is critical for further utilizing the EBRBS in AR situations within dynamic smart environments. An eigendecomposition-based sensor selection method is firstly proposed to select an effective subset of sensors and to also enable efficient implementation to facilitate online AR. A novel domain division-based rule generation method is also proposed to generate and update an EBRB efficiently when new sensor data are available or when some sensors should be included or excluded in the EBRB. The combination of these two methods leads to an enhanced EBRBS, called online updating EBRBS. Two datasets (in a balanced class situation) obtained from simulation and actual environments are studied to provide detailed experimental analysis as a preliminary study and basis to handle further the imbalanced situation of real AR. The experimental results demonstrate an enhanced performance of the online updating EBRBS compared with the original EBRBS and some benchmark AR models, in terms of efficiency and effectiveness.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extended belief rule base</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online model updating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activity recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart environment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ying-Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nugent, Chris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martínez, Luis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Expert systems with applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">186</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320577961</subfield><subfield code="w">(DE-600)2017237-0</subfield><subfield code="w">(DE-576)11481807X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:186</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">186</subfield></datafield></record></collection>
|
author |
Yang, Long-Hao |
spellingShingle |
Yang, Long-Hao ddc 004 bkl 54.72 misc Extended belief rule base misc Online model updating misc Feature selection misc Activity recognition misc Smart environment Online updating extended belief rule-based system for sensor-based activity recognition |
authorStr |
Yang, Long-Hao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320577961 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 VZ 54.72 bkl Online updating extended belief rule-based system for sensor-based activity recognition Extended belief rule base Online model updating Feature selection Activity recognition Smart environment |
topic |
ddc 004 bkl 54.72 misc Extended belief rule base misc Online model updating misc Feature selection misc Activity recognition misc Smart environment |
topic_unstemmed |
ddc 004 bkl 54.72 misc Extended belief rule base misc Online model updating misc Feature selection misc Activity recognition misc Smart environment |
topic_browse |
ddc 004 bkl 54.72 misc Extended belief rule base misc Online model updating misc Feature selection misc Activity recognition misc Smart environment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Expert systems with applications |
hierarchy_parent_id |
320577961 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Expert systems with applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X |
title |
Online updating extended belief rule-based system for sensor-based activity recognition |
ctrlnum |
(DE-627)ELV006790771 (ELSEVIER)S0957-4174(21)01116-7 |
title_full |
Online updating extended belief rule-based system for sensor-based activity recognition |
author_sort |
Yang, Long-Hao |
journal |
Expert systems with applications |
journalStr |
Expert systems with applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Yang, Long-Hao Liu, Jun Wang, Ying-Ming Nugent, Chris Martínez, Luis |
container_volume |
186 |
class |
004 VZ 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yang, Long-Hao |
doi_str_mv |
10.1016/j.eswa.2021.115737 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
online updating extended belief rule-based system for sensor-based activity recognition |
title_auth |
Online updating extended belief rule-based system for sensor-based activity recognition |
abstract |
Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focuses on the extended belief rule-based system (EBRBS), which offered promising performance compared with popular benchmark AR models and exhibited a high robustness in the situation of sensor failure. Nevertheless, efficiency remains one of the major issues to be improved for determining and updating the extended belief rule base (EBRB) within the EBRBS. This is critical for further utilizing the EBRBS in AR situations within dynamic smart environments. An eigendecomposition-based sensor selection method is firstly proposed to select an effective subset of sensors and to also enable efficient implementation to facilitate online AR. A novel domain division-based rule generation method is also proposed to generate and update an EBRB efficiently when new sensor data are available or when some sensors should be included or excluded in the EBRB. The combination of these two methods leads to an enhanced EBRBS, called online updating EBRBS. Two datasets (in a balanced class situation) obtained from simulation and actual environments are studied to provide detailed experimental analysis as a preliminary study and basis to handle further the imbalanced situation of real AR. The experimental results demonstrate an enhanced performance of the online updating EBRBS compared with the original EBRBS and some benchmark AR models, in terms of efficiency and effectiveness. |
abstractGer |
Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focuses on the extended belief rule-based system (EBRBS), which offered promising performance compared with popular benchmark AR models and exhibited a high robustness in the situation of sensor failure. Nevertheless, efficiency remains one of the major issues to be improved for determining and updating the extended belief rule base (EBRB) within the EBRBS. This is critical for further utilizing the EBRBS in AR situations within dynamic smart environments. An eigendecomposition-based sensor selection method is firstly proposed to select an effective subset of sensors and to also enable efficient implementation to facilitate online AR. A novel domain division-based rule generation method is also proposed to generate and update an EBRB efficiently when new sensor data are available or when some sensors should be included or excluded in the EBRB. The combination of these two methods leads to an enhanced EBRBS, called online updating EBRBS. Two datasets (in a balanced class situation) obtained from simulation and actual environments are studied to provide detailed experimental analysis as a preliminary study and basis to handle further the imbalanced situation of real AR. The experimental results demonstrate an enhanced performance of the online updating EBRBS compared with the original EBRBS and some benchmark AR models, in terms of efficiency and effectiveness. |
abstract_unstemmed |
Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focuses on the extended belief rule-based system (EBRBS), which offered promising performance compared with popular benchmark AR models and exhibited a high robustness in the situation of sensor failure. Nevertheless, efficiency remains one of the major issues to be improved for determining and updating the extended belief rule base (EBRB) within the EBRBS. This is critical for further utilizing the EBRBS in AR situations within dynamic smart environments. An eigendecomposition-based sensor selection method is firstly proposed to select an effective subset of sensors and to also enable efficient implementation to facilitate online AR. A novel domain division-based rule generation method is also proposed to generate and update an EBRB efficiently when new sensor data are available or when some sensors should be included or excluded in the EBRB. The combination of these two methods leads to an enhanced EBRBS, called online updating EBRBS. Two datasets (in a balanced class situation) obtained from simulation and actual environments are studied to provide detailed experimental analysis as a preliminary study and basis to handle further the imbalanced situation of real AR. The experimental results demonstrate an enhanced performance of the online updating EBRBS compared with the original EBRBS and some benchmark AR models, in terms of efficiency and effectiveness. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Online updating extended belief rule-based system for sensor-based activity recognition |
remote_bool |
true |
author2 |
Liu, Jun Wang, Ying-Ming Nugent, Chris Martínez, Luis |
author2Str |
Liu, Jun Wang, Ying-Ming Nugent, Chris Martínez, Luis |
ppnlink |
320577961 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.eswa.2021.115737 |
up_date |
2024-07-06T22:34:27.869Z |
_version_ |
1803870816562053120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006790771</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231028093021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2021.115737</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006790771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(21)01116-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Long-Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Online updating extended belief rule-based system for sensor-based activity recognition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sensor-based activity recognition (AR) is a core problem with the research domain of smart environments. It has, however, the potential to provide solutions to address the problems associated with the growing size and ageing profile of the global population. The work presented within this paper focuses on the extended belief rule-based system (EBRBS), which offered promising performance compared with popular benchmark AR models and exhibited a high robustness in the situation of sensor failure. Nevertheless, efficiency remains one of the major issues to be improved for determining and updating the extended belief rule base (EBRB) within the EBRBS. This is critical for further utilizing the EBRBS in AR situations within dynamic smart environments. An eigendecomposition-based sensor selection method is firstly proposed to select an effective subset of sensors and to also enable efficient implementation to facilitate online AR. A novel domain division-based rule generation method is also proposed to generate and update an EBRB efficiently when new sensor data are available or when some sensors should be included or excluded in the EBRB. The combination of these two methods leads to an enhanced EBRBS, called online updating EBRBS. Two datasets (in a balanced class situation) obtained from simulation and actual environments are studied to provide detailed experimental analysis as a preliminary study and basis to handle further the imbalanced situation of real AR. The experimental results demonstrate an enhanced performance of the online updating EBRBS compared with the original EBRBS and some benchmark AR models, in terms of efficiency and effectiveness.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extended belief rule base</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online model updating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activity recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart environment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ying-Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nugent, Chris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martínez, Luis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Expert systems with applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">186</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320577961</subfield><subfield code="w">(DE-600)2017237-0</subfield><subfield code="w">(DE-576)11481807X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:186</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">186</subfield></datafield></record></collection>
|
score |
7.401986 |