JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration
Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e...
Ausführliche Beschreibung
Autor*in: |
Wang, Yuan [verfasserIn] Yang, Bisheng [verfasserIn] Chen, Yiping [verfasserIn] Liang, Fuxun [verfasserIn] Dong, Zhen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of applied earth observation and geoinformation - Amsterdam [u.a.] : Elsevier Science, 1999, 104 |
---|---|
Übergeordnetes Werk: |
volume:104 |
DOI / URN: |
10.1016/j.jag.2021.102534 |
---|
Katalog-ID: |
ELV006870414 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006870414 | ||
003 | DE-627 | ||
005 | 20230524162048.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jag.2021.102534 |2 doi | |
035 | |a (DE-627)ELV006870414 | ||
035 | |a (ELSEVIER)S0303-2434(21)00241-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a KARTEN |q DE-1a |2 fid | ||
084 | |a 38.03 |2 bkl | ||
084 | |a 74.48 |2 bkl | ||
084 | |a 74.41 |2 bkl | ||
100 | 1 | |a Wang, Yuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e.g., mountain). To address these issues, a novel neural network JoKDNet is proposed to jointly learn the keypoint detection and feature description to improve the feasibility and accuracy of point clouds registration. Firstly, a novel keypoint detection module is introduced to automatically learn the score of each sampled point and regard the most significant Top-k sampled points as the detected keypoints. Secondly, an enhanced feature description module is proposed to learn the feature representation of each keypoint by fusing the hierarchical local features and context features. Thirdly, a loss function is designed to make the detected keypoints more distinguishable for matching, which simultaneously maximizes the feature distance between non-corresponding keypoints and minimizes the feature distance of corresponding keypoints. Finally, the distance matrix module and RANdom SAmple Consensus (RANSAC) are utilized to determine the correspondences of source and target point clouds for the transformation calculation. Comprehensive experiments show that the JoKDNet performs effectively on five challenging scenes (e.g., park, forest, tunnel, underground excavation, and mountain) from two datasets (WHU-TLS and ETH-TLS) in terms of registration errors, and robustness to varying scenes, with the maximum rotation error less than 0.06° and maximum translation error less than 0.84 m without ICP. | ||
650 | 4 | |a Point clouds | |
650 | 4 | |a Registration | |
650 | 4 | |a 3D deep learning | |
650 | 4 | |a Keypoint detection | |
650 | 4 | |a Feature descriptor | |
700 | 1 | |a Yang, Bisheng |e verfasserin |4 aut | |
700 | 1 | |a Chen, Yiping |e verfasserin |4 aut | |
700 | 1 | |a Liang, Fuxun |e verfasserin |4 aut | |
700 | 1 | |a Dong, Zhen |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of applied earth observation and geoinformation |d Amsterdam [u.a.] : Elsevier Science, 1999 |g 104 |h Online-Ressource |w (DE-627)359784119 |w (DE-600)2097960-5 |w (DE-576)25927254X |x 1872-826X |7 nnns |
773 | 1 | 8 | |g volume:104 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a FID-KARTEN | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-AST | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.03 |j Methoden und Techniken der Geowissenschaften |
936 | b | k | |a 74.48 |j Geoinformationssysteme |
936 | b | k | |a 74.41 |j Luftaufnahmen |j Photogrammetrie |
951 | |a AR | ||
952 | |d 104 |
author_variant |
y w yw b y by y c yc f l fl z d zd |
---|---|
matchkey_str |
article:1872826X:2021----::odeaonkyondtcinndsrpinewrfragsaeudot |
hierarchy_sort_str |
2021 |
bklnumber |
38.03 74.48 74.41 |
publishDate |
2021 |
allfields |
10.1016/j.jag.2021.102534 doi (DE-627)ELV006870414 (ELSEVIER)S0303-2434(21)00241-5 DE-627 ger DE-627 rda eng 550 DE-600 KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl Wang, Yuan verfasserin aut JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e.g., mountain). To address these issues, a novel neural network JoKDNet is proposed to jointly learn the keypoint detection and feature description to improve the feasibility and accuracy of point clouds registration. Firstly, a novel keypoint detection module is introduced to automatically learn the score of each sampled point and regard the most significant Top-k sampled points as the detected keypoints. Secondly, an enhanced feature description module is proposed to learn the feature representation of each keypoint by fusing the hierarchical local features and context features. Thirdly, a loss function is designed to make the detected keypoints more distinguishable for matching, which simultaneously maximizes the feature distance between non-corresponding keypoints and minimizes the feature distance of corresponding keypoints. Finally, the distance matrix module and RANdom SAmple Consensus (RANSAC) are utilized to determine the correspondences of source and target point clouds for the transformation calculation. Comprehensive experiments show that the JoKDNet performs effectively on five challenging scenes (e.g., park, forest, tunnel, underground excavation, and mountain) from two datasets (WHU-TLS and ETH-TLS) in terms of registration errors, and robustness to varying scenes, with the maximum rotation error less than 0.06° and maximum translation error less than 0.84 m without ICP. Point clouds Registration 3D deep learning Keypoint detection Feature descriptor Yang, Bisheng verfasserin aut Chen, Yiping verfasserin aut Liang, Fuxun verfasserin aut Dong, Zhen verfasserin aut Enthalten in International journal of applied earth observation and geoinformation Amsterdam [u.a.] : Elsevier Science, 1999 104 Online-Ressource (DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X 1872-826X nnns volume:104 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.03 Methoden und Techniken der Geowissenschaften 74.48 Geoinformationssysteme 74.41 Luftaufnahmen Photogrammetrie AR 104 |
spelling |
10.1016/j.jag.2021.102534 doi (DE-627)ELV006870414 (ELSEVIER)S0303-2434(21)00241-5 DE-627 ger DE-627 rda eng 550 DE-600 KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl Wang, Yuan verfasserin aut JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e.g., mountain). To address these issues, a novel neural network JoKDNet is proposed to jointly learn the keypoint detection and feature description to improve the feasibility and accuracy of point clouds registration. Firstly, a novel keypoint detection module is introduced to automatically learn the score of each sampled point and regard the most significant Top-k sampled points as the detected keypoints. Secondly, an enhanced feature description module is proposed to learn the feature representation of each keypoint by fusing the hierarchical local features and context features. Thirdly, a loss function is designed to make the detected keypoints more distinguishable for matching, which simultaneously maximizes the feature distance between non-corresponding keypoints and minimizes the feature distance of corresponding keypoints. Finally, the distance matrix module and RANdom SAmple Consensus (RANSAC) are utilized to determine the correspondences of source and target point clouds for the transformation calculation. Comprehensive experiments show that the JoKDNet performs effectively on five challenging scenes (e.g., park, forest, tunnel, underground excavation, and mountain) from two datasets (WHU-TLS and ETH-TLS) in terms of registration errors, and robustness to varying scenes, with the maximum rotation error less than 0.06° and maximum translation error less than 0.84 m without ICP. Point clouds Registration 3D deep learning Keypoint detection Feature descriptor Yang, Bisheng verfasserin aut Chen, Yiping verfasserin aut Liang, Fuxun verfasserin aut Dong, Zhen verfasserin aut Enthalten in International journal of applied earth observation and geoinformation Amsterdam [u.a.] : Elsevier Science, 1999 104 Online-Ressource (DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X 1872-826X nnns volume:104 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.03 Methoden und Techniken der Geowissenschaften 74.48 Geoinformationssysteme 74.41 Luftaufnahmen Photogrammetrie AR 104 |
allfields_unstemmed |
10.1016/j.jag.2021.102534 doi (DE-627)ELV006870414 (ELSEVIER)S0303-2434(21)00241-5 DE-627 ger DE-627 rda eng 550 DE-600 KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl Wang, Yuan verfasserin aut JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e.g., mountain). To address these issues, a novel neural network JoKDNet is proposed to jointly learn the keypoint detection and feature description to improve the feasibility and accuracy of point clouds registration. Firstly, a novel keypoint detection module is introduced to automatically learn the score of each sampled point and regard the most significant Top-k sampled points as the detected keypoints. Secondly, an enhanced feature description module is proposed to learn the feature representation of each keypoint by fusing the hierarchical local features and context features. Thirdly, a loss function is designed to make the detected keypoints more distinguishable for matching, which simultaneously maximizes the feature distance between non-corresponding keypoints and minimizes the feature distance of corresponding keypoints. Finally, the distance matrix module and RANdom SAmple Consensus (RANSAC) are utilized to determine the correspondences of source and target point clouds for the transformation calculation. Comprehensive experiments show that the JoKDNet performs effectively on five challenging scenes (e.g., park, forest, tunnel, underground excavation, and mountain) from two datasets (WHU-TLS and ETH-TLS) in terms of registration errors, and robustness to varying scenes, with the maximum rotation error less than 0.06° and maximum translation error less than 0.84 m without ICP. Point clouds Registration 3D deep learning Keypoint detection Feature descriptor Yang, Bisheng verfasserin aut Chen, Yiping verfasserin aut Liang, Fuxun verfasserin aut Dong, Zhen verfasserin aut Enthalten in International journal of applied earth observation and geoinformation Amsterdam [u.a.] : Elsevier Science, 1999 104 Online-Ressource (DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X 1872-826X nnns volume:104 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.03 Methoden und Techniken der Geowissenschaften 74.48 Geoinformationssysteme 74.41 Luftaufnahmen Photogrammetrie AR 104 |
allfieldsGer |
10.1016/j.jag.2021.102534 doi (DE-627)ELV006870414 (ELSEVIER)S0303-2434(21)00241-5 DE-627 ger DE-627 rda eng 550 DE-600 KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl Wang, Yuan verfasserin aut JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e.g., mountain). To address these issues, a novel neural network JoKDNet is proposed to jointly learn the keypoint detection and feature description to improve the feasibility and accuracy of point clouds registration. Firstly, a novel keypoint detection module is introduced to automatically learn the score of each sampled point and regard the most significant Top-k sampled points as the detected keypoints. Secondly, an enhanced feature description module is proposed to learn the feature representation of each keypoint by fusing the hierarchical local features and context features. Thirdly, a loss function is designed to make the detected keypoints more distinguishable for matching, which simultaneously maximizes the feature distance between non-corresponding keypoints and minimizes the feature distance of corresponding keypoints. Finally, the distance matrix module and RANdom SAmple Consensus (RANSAC) are utilized to determine the correspondences of source and target point clouds for the transformation calculation. Comprehensive experiments show that the JoKDNet performs effectively on five challenging scenes (e.g., park, forest, tunnel, underground excavation, and mountain) from two datasets (WHU-TLS and ETH-TLS) in terms of registration errors, and robustness to varying scenes, with the maximum rotation error less than 0.06° and maximum translation error less than 0.84 m without ICP. Point clouds Registration 3D deep learning Keypoint detection Feature descriptor Yang, Bisheng verfasserin aut Chen, Yiping verfasserin aut Liang, Fuxun verfasserin aut Dong, Zhen verfasserin aut Enthalten in International journal of applied earth observation and geoinformation Amsterdam [u.a.] : Elsevier Science, 1999 104 Online-Ressource (DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X 1872-826X nnns volume:104 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.03 Methoden und Techniken der Geowissenschaften 74.48 Geoinformationssysteme 74.41 Luftaufnahmen Photogrammetrie AR 104 |
allfieldsSound |
10.1016/j.jag.2021.102534 doi (DE-627)ELV006870414 (ELSEVIER)S0303-2434(21)00241-5 DE-627 ger DE-627 rda eng 550 DE-600 KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl Wang, Yuan verfasserin aut JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e.g., mountain). To address these issues, a novel neural network JoKDNet is proposed to jointly learn the keypoint detection and feature description to improve the feasibility and accuracy of point clouds registration. Firstly, a novel keypoint detection module is introduced to automatically learn the score of each sampled point and regard the most significant Top-k sampled points as the detected keypoints. Secondly, an enhanced feature description module is proposed to learn the feature representation of each keypoint by fusing the hierarchical local features and context features. Thirdly, a loss function is designed to make the detected keypoints more distinguishable for matching, which simultaneously maximizes the feature distance between non-corresponding keypoints and minimizes the feature distance of corresponding keypoints. Finally, the distance matrix module and RANdom SAmple Consensus (RANSAC) are utilized to determine the correspondences of source and target point clouds for the transformation calculation. Comprehensive experiments show that the JoKDNet performs effectively on five challenging scenes (e.g., park, forest, tunnel, underground excavation, and mountain) from two datasets (WHU-TLS and ETH-TLS) in terms of registration errors, and robustness to varying scenes, with the maximum rotation error less than 0.06° and maximum translation error less than 0.84 m without ICP. Point clouds Registration 3D deep learning Keypoint detection Feature descriptor Yang, Bisheng verfasserin aut Chen, Yiping verfasserin aut Liang, Fuxun verfasserin aut Dong, Zhen verfasserin aut Enthalten in International journal of applied earth observation and geoinformation Amsterdam [u.a.] : Elsevier Science, 1999 104 Online-Ressource (DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X 1872-826X nnns volume:104 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.03 Methoden und Techniken der Geowissenschaften 74.48 Geoinformationssysteme 74.41 Luftaufnahmen Photogrammetrie AR 104 |
language |
English |
source |
Enthalten in International journal of applied earth observation and geoinformation 104 volume:104 |
sourceStr |
Enthalten in International journal of applied earth observation and geoinformation 104 volume:104 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Geowissenschaften Geoinformationssysteme Luftaufnahmen Photogrammetrie |
institution |
findex.gbv.de |
topic_facet |
Point clouds Registration 3D deep learning Keypoint detection Feature descriptor |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
International journal of applied earth observation and geoinformation |
authorswithroles_txt_mv |
Wang, Yuan @@aut@@ Yang, Bisheng @@aut@@ Chen, Yiping @@aut@@ Liang, Fuxun @@aut@@ Dong, Zhen @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
359784119 |
dewey-sort |
3550 |
id |
ELV006870414 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006870414</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162048.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jag.2021.102534</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006870414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0303-2434(21)00241-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">KARTEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.48</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e.g., mountain). To address these issues, a novel neural network JoKDNet is proposed to jointly learn the keypoint detection and feature description to improve the feasibility and accuracy of point clouds registration. Firstly, a novel keypoint detection module is introduced to automatically learn the score of each sampled point and regard the most significant Top-k sampled points as the detected keypoints. Secondly, an enhanced feature description module is proposed to learn the feature representation of each keypoint by fusing the hierarchical local features and context features. Thirdly, a loss function is designed to make the detected keypoints more distinguishable for matching, which simultaneously maximizes the feature distance between non-corresponding keypoints and minimizes the feature distance of corresponding keypoints. Finally, the distance matrix module and RANdom SAmple Consensus (RANSAC) are utilized to determine the correspondences of source and target point clouds for the transformation calculation. Comprehensive experiments show that the JoKDNet performs effectively on five challenging scenes (e.g., park, forest, tunnel, underground excavation, and mountain) from two datasets (WHU-TLS and ETH-TLS) in terms of registration errors, and robustness to varying scenes, with the maximum rotation error less than 0.06° and maximum translation error less than 0.84 m without ICP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point clouds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Registration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Keypoint detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature descriptor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Bisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yiping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Fuxun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of applied earth observation and geoinformation</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1999</subfield><subfield code="g">104</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)359784119</subfield><subfield code="w">(DE-600)2097960-5</subfield><subfield code="w">(DE-576)25927254X</subfield><subfield code="x">1872-826X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:104</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-KARTEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.03</subfield><subfield code="j">Methoden und Techniken der Geowissenschaften</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.48</subfield><subfield code="j">Geoinformationssysteme</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">104</subfield></datafield></record></collection>
|
author |
Wang, Yuan |
spellingShingle |
Wang, Yuan ddc 550 fid KARTEN bkl 38.03 bkl 74.48 bkl 74.41 misc Point clouds misc Registration misc 3D deep learning misc Keypoint detection misc Feature descriptor JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration |
authorStr |
Wang, Yuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)359784119 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-826X |
topic_title |
550 DE-600 KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration Point clouds Registration 3D deep learning Keypoint detection Feature descriptor |
topic |
ddc 550 fid KARTEN bkl 38.03 bkl 74.48 bkl 74.41 misc Point clouds misc Registration misc 3D deep learning misc Keypoint detection misc Feature descriptor |
topic_unstemmed |
ddc 550 fid KARTEN bkl 38.03 bkl 74.48 bkl 74.41 misc Point clouds misc Registration misc 3D deep learning misc Keypoint detection misc Feature descriptor |
topic_browse |
ddc 550 fid KARTEN bkl 38.03 bkl 74.48 bkl 74.41 misc Point clouds misc Registration misc 3D deep learning misc Keypoint detection misc Feature descriptor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of applied earth observation and geoinformation |
hierarchy_parent_id |
359784119 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
International journal of applied earth observation and geoinformation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)359784119 (DE-600)2097960-5 (DE-576)25927254X |
title |
JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration |
ctrlnum |
(DE-627)ELV006870414 (ELSEVIER)S0303-2434(21)00241-5 |
title_full |
JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration |
author_sort |
Wang, Yuan |
journal |
International journal of applied earth observation and geoinformation |
journalStr |
International journal of applied earth observation and geoinformation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Yuan Yang, Bisheng Chen, Yiping Liang, Fuxun Dong, Zhen |
container_volume |
104 |
class |
550 DE-600 KARTEN DE-1a fid 38.03 bkl 74.48 bkl 74.41 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Yuan |
doi_str_mv |
10.1016/j.jag.2021.102534 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
jokdnet: a joint keypoint detection and description network for large-scale outdoor tls point clouds registration |
title_auth |
JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration |
abstract |
Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e.g., mountain). To address these issues, a novel neural network JoKDNet is proposed to jointly learn the keypoint detection and feature description to improve the feasibility and accuracy of point clouds registration. Firstly, a novel keypoint detection module is introduced to automatically learn the score of each sampled point and regard the most significant Top-k sampled points as the detected keypoints. Secondly, an enhanced feature description module is proposed to learn the feature representation of each keypoint by fusing the hierarchical local features and context features. Thirdly, a loss function is designed to make the detected keypoints more distinguishable for matching, which simultaneously maximizes the feature distance between non-corresponding keypoints and minimizes the feature distance of corresponding keypoints. Finally, the distance matrix module and RANdom SAmple Consensus (RANSAC) are utilized to determine the correspondences of source and target point clouds for the transformation calculation. Comprehensive experiments show that the JoKDNet performs effectively on five challenging scenes (e.g., park, forest, tunnel, underground excavation, and mountain) from two datasets (WHU-TLS and ETH-TLS) in terms of registration errors, and robustness to varying scenes, with the maximum rotation error less than 0.06° and maximum translation error less than 0.84 m without ICP. |
abstractGer |
Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e.g., mountain). To address these issues, a novel neural network JoKDNet is proposed to jointly learn the keypoint detection and feature description to improve the feasibility and accuracy of point clouds registration. Firstly, a novel keypoint detection module is introduced to automatically learn the score of each sampled point and regard the most significant Top-k sampled points as the detected keypoints. Secondly, an enhanced feature description module is proposed to learn the feature representation of each keypoint by fusing the hierarchical local features and context features. Thirdly, a loss function is designed to make the detected keypoints more distinguishable for matching, which simultaneously maximizes the feature distance between non-corresponding keypoints and minimizes the feature distance of corresponding keypoints. Finally, the distance matrix module and RANdom SAmple Consensus (RANSAC) are utilized to determine the correspondences of source and target point clouds for the transformation calculation. Comprehensive experiments show that the JoKDNet performs effectively on five challenging scenes (e.g., park, forest, tunnel, underground excavation, and mountain) from two datasets (WHU-TLS and ETH-TLS) in terms of registration errors, and robustness to varying scenes, with the maximum rotation error less than 0.06° and maximum translation error less than 0.84 m without ICP. |
abstract_unstemmed |
Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e.g., mountain). To address these issues, a novel neural network JoKDNet is proposed to jointly learn the keypoint detection and feature description to improve the feasibility and accuracy of point clouds registration. Firstly, a novel keypoint detection module is introduced to automatically learn the score of each sampled point and regard the most significant Top-k sampled points as the detected keypoints. Secondly, an enhanced feature description module is proposed to learn the feature representation of each keypoint by fusing the hierarchical local features and context features. Thirdly, a loss function is designed to make the detected keypoints more distinguishable for matching, which simultaneously maximizes the feature distance between non-corresponding keypoints and minimizes the feature distance of corresponding keypoints. Finally, the distance matrix module and RANdom SAmple Consensus (RANSAC) are utilized to determine the correspondences of source and target point clouds for the transformation calculation. Comprehensive experiments show that the JoKDNet performs effectively on five challenging scenes (e.g., park, forest, tunnel, underground excavation, and mountain) from two datasets (WHU-TLS and ETH-TLS) in terms of registration errors, and robustness to varying scenes, with the maximum rotation error less than 0.06° and maximum translation error less than 0.84 m without ICP. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-KARTEN SSG-OPC-GGO SSG-OPC-AST SSG-OPC-GEO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration |
remote_bool |
true |
author2 |
Yang, Bisheng Chen, Yiping Liang, Fuxun Dong, Zhen |
author2Str |
Yang, Bisheng Chen, Yiping Liang, Fuxun Dong, Zhen |
ppnlink |
359784119 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jag.2021.102534 |
up_date |
2024-07-06T22:50:02.181Z |
_version_ |
1803871796260241408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006870414</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162048.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jag.2021.102534</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006870414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0303-2434(21)00241-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">KARTEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.48</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">JoKDNet: A joint keypoint detection and description network for large-scale outdoor TLS point clouds registration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Registration of large-scale outdoor Terrestrial Laser Scanning (TLS) point clouds remains many challenges in the scenes with symmetric and repetitive elements (e.g., park, forest, and tunnel), the weak geometric features (e.g., underground excavation), and dramatically changes in different phases (e.g., mountain). To address these issues, a novel neural network JoKDNet is proposed to jointly learn the keypoint detection and feature description to improve the feasibility and accuracy of point clouds registration. Firstly, a novel keypoint detection module is introduced to automatically learn the score of each sampled point and regard the most significant Top-k sampled points as the detected keypoints. Secondly, an enhanced feature description module is proposed to learn the feature representation of each keypoint by fusing the hierarchical local features and context features. Thirdly, a loss function is designed to make the detected keypoints more distinguishable for matching, which simultaneously maximizes the feature distance between non-corresponding keypoints and minimizes the feature distance of corresponding keypoints. Finally, the distance matrix module and RANdom SAmple Consensus (RANSAC) are utilized to determine the correspondences of source and target point clouds for the transformation calculation. Comprehensive experiments show that the JoKDNet performs effectively on five challenging scenes (e.g., park, forest, tunnel, underground excavation, and mountain) from two datasets (WHU-TLS and ETH-TLS) in terms of registration errors, and robustness to varying scenes, with the maximum rotation error less than 0.06° and maximum translation error less than 0.84 m without ICP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point clouds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Registration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Keypoint detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature descriptor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Bisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yiping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Fuxun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of applied earth observation and geoinformation</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1999</subfield><subfield code="g">104</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)359784119</subfield><subfield code="w">(DE-600)2097960-5</subfield><subfield code="w">(DE-576)25927254X</subfield><subfield code="x">1872-826X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:104</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-KARTEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.03</subfield><subfield code="j">Methoden und Techniken der Geowissenschaften</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.48</subfield><subfield code="j">Geoinformationssysteme</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">104</subfield></datafield></record></collection>
|
score |
7.401513 |